Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
|
3 |
-
#
|
4 |
os.environ["HF_HOME"] = "/tmp/hf_cache"
|
5 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
6 |
os.environ["HF_DATASETS_CACHE"] = "/tmp/hf_cache"
|
@@ -14,7 +14,7 @@ from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
|
14 |
|
15 |
app = Flask(__name__)
|
16 |
|
17 |
-
#
|
18 |
model_id = "openai/whisper-base"
|
19 |
processor = WhisperProcessor.from_pretrained(model_id)
|
20 |
model = WhisperForConditionalGeneration.from_pretrained(model_id)
|
@@ -22,8 +22,6 @@ model = WhisperForConditionalGeneration.from_pretrained(model_id)
|
|
22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
model.to(device)
|
24 |
|
25 |
-
forced_decoder_ids = processor.get_decoder_prompt_ids(language="he", task="transcribe")
|
26 |
-
|
27 |
def transcribe_audio(audio_url):
|
28 |
# 1) Download audio file to /tmp
|
29 |
response = requests.get(audio_url)
|
@@ -31,14 +29,14 @@ def transcribe_audio(audio_url):
|
|
31 |
with open(audio_path, "wb") as f:
|
32 |
f.write(response.content)
|
33 |
|
34 |
-
# 2) Load with librosa
|
35 |
waveform, sr = librosa.load(audio_path, sr=16000)
|
36 |
|
37 |
-
# 3)
|
38 |
max_duration_sec = 3600
|
39 |
waveform = waveform[:sr * max_duration_sec]
|
40 |
|
41 |
-
# 4) Split into
|
42 |
chunk_duration_sec = 25
|
43 |
chunk_size = sr * chunk_duration_sec
|
44 |
chunks = [waveform[i : i + chunk_size] for i in range(0, len(waveform), chunk_size)]
|
@@ -48,11 +46,9 @@ def transcribe_audio(audio_url):
|
|
48 |
inputs = processor(chunk, sampling_rate=16000, return_tensors="pt", padding=True)
|
49 |
input_features = inputs.input_features.to(device)
|
50 |
|
|
|
51 |
with torch.no_grad():
|
52 |
-
predicted_ids = model.generate(
|
53 |
-
input_features,
|
54 |
-
forced_decoder_ids=forced_decoder_ids
|
55 |
-
)
|
56 |
|
57 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
58 |
partial_text += transcription + "\n"
|
|
|
1 |
import os
|
2 |
|
3 |
+
# Ensure environment variables are set before Transformers are imported
|
4 |
os.environ["HF_HOME"] = "/tmp/hf_cache"
|
5 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
6 |
os.environ["HF_DATASETS_CACHE"] = "/tmp/hf_cache"
|
|
|
14 |
|
15 |
app = Flask(__name__)
|
16 |
|
17 |
+
# Using a smaller model for faster CPU loading
|
18 |
model_id = "openai/whisper-base"
|
19 |
processor = WhisperProcessor.from_pretrained(model_id)
|
20 |
model = WhisperForConditionalGeneration.from_pretrained(model_id)
|
|
|
22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
model.to(device)
|
24 |
|
|
|
|
|
25 |
def transcribe_audio(audio_url):
|
26 |
# 1) Download audio file to /tmp
|
27 |
response = requests.get(audio_url)
|
|
|
29 |
with open(audio_path, "wb") as f:
|
30 |
f.write(response.content)
|
31 |
|
32 |
+
# 2) Load audio with librosa
|
33 |
waveform, sr = librosa.load(audio_path, sr=16000)
|
34 |
|
35 |
+
# 3) Optional safety limit (1 hour)
|
36 |
max_duration_sec = 3600
|
37 |
waveform = waveform[:sr * max_duration_sec]
|
38 |
|
39 |
+
# 4) Split into smaller chunks (25s)
|
40 |
chunk_duration_sec = 25
|
41 |
chunk_size = sr * chunk_duration_sec
|
42 |
chunks = [waveform[i : i + chunk_size] for i in range(0, len(waveform), chunk_size)]
|
|
|
46 |
inputs = processor(chunk, sampling_rate=16000, return_tensors="pt", padding=True)
|
47 |
input_features = inputs.input_features.to(device)
|
48 |
|
49 |
+
# **No** forced_decoder_ids => Whisper auto-detects language
|
50 |
with torch.no_grad():
|
51 |
+
predicted_ids = model.generate(input_features)
|
|
|
|
|
|
|
52 |
|
53 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
54 |
partial_text += transcription + "\n"
|