File size: 29,322 Bytes
eead5d8 caf1faa a5686cb bcc8503 ff42e3f f0fc5f8 71ab0a8 5f9881c f842a0e 4b4bf28 48e003d 4b4bf28 f0fc5f8 f842a0e f0fc5f8 6d2199d f0fc5f8 d5c9c65 5f9881c f0fc5f8 5f9881c 48e003d 5f9881c df26154 5f9881c bcc8503 48e003d bcc8503 f0fc5f8 ff42e3f 6d2199d ff42e3f bcc8503 f0fc5f8 abfa81d ff42e3f 46e3999 6d2199d df26154 7498c33 99e2b1f 6d2199d 91c4196 6d2199d 91c4196 6d2199d d4c1a74 6d2199d 91c4196 6d2199d a4595fc ff42e3f 0fb079d c974ee5 f0fc5f8 bcc8503 f0fc5f8 bcc8503 f0fc5f8 bcc8503 f0fc5f8 bcc8503 d4c1a74 bcc8503 df26154 48e003d 887905a bcc8503 df26154 5f9881c df26154 3d561c7 df26154 48e003d df26154 bcc8503 d4c1a74 5f9881c caf1faa 48e003d bcc8503 a973186 df26154 3d561c7 df26154 48e003d df26154 48e003d df26154 24f8d00 df26154 48e003d df26154 bcc8503 df26154 bcc8503 df26154 bcc8503 df26154 48e003d df26154 24f8d00 df26154 24f8d00 df26154 24f8d00 63d1de4 24f8d00 df26154 ee3f645 24f8d00 df26154 24f8d00 df26154 24f8d00 bcc8503 46e3999 a5686cb 91c4196 6d2199d 91c4196 6d2199d 91c4196 12574b1 dc1d7e6 fdf1622 91c4196 6d2199d 91c4196 6d2199d 91c4196 caf1faa f0fc5f8 ff42e3f 787d3cb c974ee5 787d3cb 38ed905 787d3cb c9bfd38 f0fc5f8 38ed905 787d3cb 7d9ec3d 5f9881c 787d3cb f0fc5f8 c974ee5 bcc8503 df26154 bcc8503 f0fc5f8 5f9881c fa9f031 df26154 f0fc5f8 5f9881c df26154 48e003d df26154 48e003d df26154 12f47f8 27a9af5 48e003d fa9f031 df26154 5f9881c df26154 5f9881c df26154 5f9881c df26154 5f9881c df26154 5f9881c df26154 bcc8503 df26154 bcc8503 df26154 bcc8503 df26154 bcc8503 df26154 bcc8503 df26154 bcc8503 df26154 bcc8503 df26154 bcc8503 3c9e1e2 bcc8503 df26154 bcc8503 df26154 bcc8503 df26154 bcc8503 df26154 bcc8503 df26154 bcc8503 df26154 bcc8503 df26154 bcc8503 df26154 bcc8503 5f9881c df26154 3c9e1e2 bcc8503 df26154 bcc8503 df26154 bcc8503 f0fc5f8 df26154 4b4bf28 df26154 caf1faa df26154 caf1faa df26154 caf1faa df26154 caf1faa df26154 caf1faa df26154 caf1faa 887905a f0fc5f8 0fb079d bcc8503 f760165 4b4bf28 bcc8503 48e003d 0b431ab bcc8503 4b4bf28 bcc8503 4b4bf28 bcc8503 4b4bf28 bcc8503 4b4bf28 bcc8503 4b4bf28 bcc8503 4b4bf28 bcc8503 4b4bf28 bcc8503 4b4bf28 bcc8503 4b4bf28 bcc8503 887905a b6bb4d7 d730458 e77b244 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
from climateqa.engine.embeddings import get_embeddings_function
embeddings_function = get_embeddings_function()
from sentence_transformers import CrossEncoder
import gradio as gr
from gradio_modal import Modal
import pandas as pd
import numpy as np
import os
import time
import re
import json
from gradio import ChatMessage
from io import BytesIO
import base64
from datetime import datetime
from azure.storage.fileshare import ShareServiceClient
from utils import create_user_id
from gradio_modal import Modal
# ClimateQ&A imports
from climateqa.engine.llm import get_llm
from climateqa.engine.vectorstore import get_pinecone_vectorstore
from climateqa.engine.reranker import get_reranker
from climateqa.sample_questions import QUESTIONS
from climateqa.constants import POSSIBLE_REPORTS
from climateqa.utils import get_image_from_azure_blob_storage
from climateqa.engine.graph import make_graph_agent
from climateqa.engine.embeddings import get_embeddings_function
from climateqa.engine.chains.retrieve_papers import find_papers
from front.utils import serialize_docs,process_figures
from climateqa.event_handler import init_audience, handle_retrieved_documents, stream_answer,handle_retrieved_owid_graphs
# Load environment variables in local mode
try:
from dotenv import load_dotenv
load_dotenv()
except Exception as e:
pass
# Set up Gradio Theme
theme = gr.themes.Base(
primary_hue="blue",
secondary_hue="red",
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)
init_prompt = """
Hello, I am ClimateQ&A, a conversational assistant designed to help you understand climate change and biodiversity loss. I will answer your questions by **sifting through the IPCC and IPBES scientific reports**.
❓ How to use
- **Language**: You can ask me your questions in any language.
- **Audience**: You can specify your audience (children, general public, experts) to get a more adapted answer.
- **Sources**: You can choose to search in the IPCC or IPBES reports, or both.
- **Relevant content sources**: You can choose to search for figures, papers, or graphs that can be relevant for your question.
⚠️ Limitations
*Please note that the AI is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*
🛈 Information
Please note that we log your questions for meta-analysis purposes, so avoid sharing any sensitive or personal information.
What do you want to learn ?
"""
system_template = {
"role": "system",
"content": init_prompt,
}
account_key = os.environ["BLOB_ACCOUNT_KEY"]
if len(account_key) == 86:
account_key += "=="
credential = {
"account_key": account_key,
"account_name": os.environ["BLOB_ACCOUNT_NAME"],
}
account_url = os.environ["BLOB_ACCOUNT_URL"]
file_share_name = "climateqa"
service = ShareServiceClient(account_url=account_url, credential=credential)
share_client = service.get_share_client(file_share_name)
user_id = create_user_id()
CITATION_LABEL = "BibTeX citation for ClimateQ&A"
CITATION_TEXT = r"""@misc{climateqa,
author={Théo Alves Da Costa, Timothée Bohe},
title={ClimateQ&A, AI-powered conversational assistant for climate change and biodiversity loss},
year={2024},
howpublished= {\url{https://climateqa.com}},
}
@software{climateqa,
author = {Théo Alves Da Costa, Timothée Bohe},
publisher = {ClimateQ&A},
title = {ClimateQ&A, AI-powered conversational assistant for climate change and biodiversity loss},
}
"""
# Create vectorstore and retriever
vectorstore = get_pinecone_vectorstore(embeddings_function, index_name = os.getenv("PINECONE_API_INDEX"))
vectorstore_graphs = get_pinecone_vectorstore(embeddings_function, index_name = os.getenv("PINECONE_API_INDEX_OWID"), text_key="description")
llm = get_llm(provider="openai",max_tokens = 1024,temperature = 0.0)
reranker = get_reranker("nano")
agent = make_graph_agent(llm=llm, vectorstore_ipcc=vectorstore, vectorstore_graphs=vectorstore_graphs, reranker=reranker)
def update_config_modal_visibility(config_open):
new_config_visibility_status = not config_open
return gr.update(visible=new_config_visibility_status), new_config_visibility_status
async def chat(query, history, audience, sources, reports, relevant_content_sources, search_only):
"""Process a chat query and return response with relevant sources and visualizations.
Args:
query (str): The user's question
history (list): Chat message history
audience (str): Target audience type
sources (list): Knowledge base sources to search
reports (list): Specific reports to search within sources
relevant_content_sources (list): Types of content to retrieve (figures, papers, etc)
search_only (bool): Whether to only search without generating answer
Yields:
tuple: Contains:
- history: Updated chat history
- docs_html: HTML of retrieved documents
- output_query: Processed query
- output_language: Detected language
- related_contents: Related content
- graphs_html: HTML of relevant graphs
"""
# Log incoming question
date_now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f">> NEW QUESTION ({date_now}) : {query}")
audience_prompt = init_audience(audience)
sources = sources or ["IPCC", "IPBES", "IPOS"]
reports = reports or []
# Prepare inputs for agent
inputs = {
"user_input": query,
"audience": audience_prompt,
"sources_input": sources,
"relevant_content_sources": relevant_content_sources,
"search_only": search_only
}
# Get streaming events from agent
result = agent.astream_events(inputs, version="v1")
# Initialize state variables
docs = []
used_figures = []
related_contents = []
docs_html = ""
output_query = ""
output_language = ""
output_keywords = ""
start_streaming = False
graphs_html = ""
figures = '<div class="figures-container"><p></p> </div>'
used_documents = []
answer_message_content = ""
# Define processing steps
steps_display = {
"categorize_intent": ("🔄️ Analyzing user message", True),
"transform_query": ("🔄️ Thinking step by step to answer the question", True),
"retrieve_documents": ("🔄️ Searching in the knowledge base", False),
}
try:
# Process streaming events
async for event in result:
if "langgraph_node" in event["metadata"]:
node = event["metadata"]["langgraph_node"]
# Handle document retrieval
if event["event"] == "on_chain_end" and event["name"] == "retrieve_documents":
docs, docs_html, history, used_documents, related_contents = handle_retrieved_documents(
event, history, used_documents
)
# Handle intent categorization
elif (event["event"] == "on_chain_end" and
node == "categorize_intent" and
event["name"] == "_write"):
intent = event["data"]["output"]["intent"]
output_language = event["data"]["output"].get("language", "English")
history[-1].content = f"Language identified: {output_language}\nIntent identified: {intent}"
# Handle processing steps display
elif event["name"] in steps_display and event["event"] == "on_chain_start":
event_description, display_output = steps_display[node]
if (not hasattr(history[-1], 'metadata') or
history[-1].metadata["title"] != event_description):
history.append(ChatMessage(
role="assistant",
content="",
metadata={'title': event_description}
))
# Handle answer streaming
elif (event["name"] != "transform_query" and
event["event"] == "on_chat_model_stream" and
node in ["answer_rag", "answer_search", "answer_chitchat"]):
history, start_streaming, answer_message_content = stream_answer(
history, event, start_streaming, answer_message_content
)
# Handle graph retrieval
elif event["name"] in ["retrieve_graphs", "retrieve_graphs_ai"] and event["event"] == "on_chain_end":
graphs_html = handle_retrieved_owid_graphs(event, graphs_html)
# Handle query transformation
if event["name"] == "transform_query" and event["event"] == "on_chain_end":
if hasattr(history[-1], "content"):
sub_questions = [q["question"] for q in event["data"]["output"]["remaining_questions"]]
history[-1].content += "Decompose question into sub-questions:\n\n - " + "\n - ".join(sub_questions)
yield history, docs_html, output_query, output_language, related_contents, graphs_html #,output_query,output_keywords
except Exception as e:
print(f"Event {event} has failed")
raise gr.Error(str(e))
try:
# Log interaction to Azure if not in local environment
if os.getenv("GRADIO_ENV") != "local":
timestamp = str(datetime.now().timestamp())
prompt = history[1]["content"]
logs = {
"user_id": str(user_id),
"prompt": prompt,
"query": prompt,
"question": output_query,
"sources": sources,
"docs": serialize_docs(docs),
"answer": history[-1].content,
"time": timestamp,
}
log_on_azure(f"{timestamp}.json", logs, share_client)
except Exception as e:
print(f"Error logging on Azure Blob Storage: {e}")
error_msg = f"ClimateQ&A Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)"
raise gr.Error(error_msg)
yield history, docs_html, output_query, output_language, related_contents, graphs_html
def save_feedback(feed: str, user_id):
if len(feed) > 1:
timestamp = str(datetime.now().timestamp())
file = user_id + timestamp + ".json"
logs = {
"user_id": user_id,
"feedback": feed,
"time": timestamp,
}
log_on_azure(file, logs, share_client)
return "Feedback submitted, thank you!"
def log_on_azure(file, logs, share_client):
logs = json.dumps(logs)
file_client = share_client.get_file_client(file)
file_client.upload_file(logs)
# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------
init_prompt = """
Hello, I am ClimateQ&A, a conversational assistant designed to help you understand climate change and biodiversity loss. I will answer your questions by **sifting through the IPCC and IPBES scientific reports**.
❓ How to use
- **Language**: You can ask me your questions in any language.
- **Audience**: You can specify your audience (children, general public, experts) to get a more adapted answer.
- **Sources**: You can choose to search in the IPCC or IPBES reports, or both.
- **Relevant content sources**: You can choose to search for figures, papers, or graphs that can be relevant for your question.
⚠️ Limitations
*Please note that the AI is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*
🛈 Information
Please note that we log your questions for meta-analysis purposes, so avoid sharing any sensitive or personal information.
What do you want to learn ?
"""
def vote(data: gr.LikeData):
if data.liked:
print(data.value)
else:
print(data)
def save_graph(saved_graphs_state, embedding, category):
print(f"\nCategory:\n{saved_graphs_state}\n")
if category not in saved_graphs_state:
saved_graphs_state[category] = []
if embedding not in saved_graphs_state[category]:
saved_graphs_state[category].append(embedding)
return saved_graphs_state, gr.Button("Graph Saved")
with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=theme, elem_id="main-component") as demo:
# State variables
chat_completed_state = gr.State(0)
current_graphs = gr.State([])
saved_graphs = gr.State({})
config_open = gr.State(False)
with gr.Tab("ClimateQ&A"):
with gr.Row(elem_id="chatbot-row"):
# Left column - Chat interface
with gr.Column(scale=2):
chatbot = gr.Chatbot(
value=[ChatMessage(role="assistant", content=init_prompt)],
type="messages",
show_copy_button=True,
show_label=False,
elem_id="chatbot",
layout="panel",
avatar_images=(None, "https://i.ibb.co/YNyd5W2/logo4.png"),
max_height="80vh",
height="100vh"
)
with gr.Row(elem_id="input-message"):
textbox = gr.Textbox(
placeholder="Ask me anything here!",
show_label=False,
scale=7,
lines=1,
interactive=True,
elem_id="input-textbox"
)
config_button = gr.Button("", elem_id="config-button")
# Right column - Content panels
with gr.Column(scale=2, variant="panel", elem_id="right-panel"):
with gr.Tabs(elem_id="right_panel_tab") as tabs:
# Examples tab
with gr.TabItem("Examples", elem_id="tab-examples", id=0):
examples_hidden = gr.Textbox(visible=False)
first_key = list(QUESTIONS.keys())[0]
dropdown_samples = gr.Dropdown(
choices=QUESTIONS.keys(),
value=first_key,
interactive=True,
label="Select a category of sample questions",
elem_id="dropdown-samples"
)
samples = []
for i, key in enumerate(QUESTIONS.keys()):
examples_visible = (i == 0)
with gr.Row(visible=examples_visible) as group_examples:
examples_questions = gr.Examples(
examples=QUESTIONS[key],
inputs=[examples_hidden],
examples_per_page=8,
run_on_click=False,
elem_id=f"examples{i}",
api_name=f"examples{i}"
)
samples.append(group_examples)
# Sources tab
with gr.Tab("Sources", elem_id="tab-sources", id=1) as tab_sources:
sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
# Recommended content tab
with gr.Tab("Recommended content", elem_id="tab-recommended_content", id=2) as tab_recommended_content:
with gr.Tabs(elem_id="group-subtabs") as tabs_recommended_content:
# Figures subtab
with gr.Tab("Figures", elem_id="tab-figures", id=3) as tab_figures:
sources_raw = gr.State()
with Modal(visible=False, elem_id="modal_figure_galery") as figure_modal:
gallery_component = gr.Gallery(
object_fit='scale-down',
elem_id="gallery-component",
height="80vh"
)
show_full_size_figures = gr.Button(
"Show figures in full size",
elem_id="show-figures",
interactive=True
)
show_full_size_figures.click(
lambda: Modal(visible=True),
None,
figure_modal
)
figures_cards = gr.HTML(show_label=False, elem_id="sources-figures")
# Papers subtab
with gr.Tab("Papers", elem_id="tab-citations", id=4) as tab_papers:
with gr.Accordion(
visible=True,
elem_id="papers-summary-popup",
label="See summary of relevant papers",
open=False
) as summary_popup:
papers_summary = gr.Markdown("", visible=True, elem_id="papers-summary")
with gr.Accordion(
visible=True,
elem_id="papers-relevant-popup",
label="See relevant papers",
open=False
) as relevant_popup:
papers_html = gr.HTML(show_label=False, elem_id="papers-textbox")
btn_citations_network = gr.Button("Explore papers citations network")
with Modal(visible=False) as papers_modal:
citations_network = gr.HTML(
"<h3>Citations Network Graph</h3>",
visible=True,
elem_id="papers-citations-network"
)
btn_citations_network.click(
lambda: Modal(visible=True),
None,
papers_modal
)
# Graphs subtab
with gr.Tab("Graphs", elem_id="tab-graphs", id=5) as tab_graphs:
graphs_container = gr.HTML(
"<h2>There are no graphs to be displayed at the moment. Try asking another question.</h2>",
elem_id="graphs-container"
)
current_graphs.change(
lambda x: x,
inputs=[current_graphs],
outputs=[graphs_container]
)
# Configuration modal
with Modal(visible=False, elem_id="modal-config") as config_modal:
gr.Markdown("Reminders: You can talk in any language, ClimateQ&A is multi-lingual!")
dropdown_sources = gr.CheckboxGroup(
choices=["IPCC", "IPBES", "IPOS"],
label="Select source (by default search in all sources)",
value=["IPCC"],
interactive=True
)
dropdown_reports = gr.Dropdown(
choices=POSSIBLE_REPORTS,
label="Or select specific reports",
multiselect=True,
value=None,
interactive=True
)
dropdown_external_sources = gr.CheckboxGroup(
choices=["IPCC figures", "OpenAlex", "OurWorldInData"],
label="Select database to search for relevant content",
value=["IPCC figures"],
interactive=True
)
search_only = gr.Checkbox(
label="Search only for recommended content without chating",
value=False,
interactive=True,
elem_id="checkbox-chat"
)
dropdown_audience = gr.Dropdown(
choices=["Children", "General public", "Experts"],
label="Select audience",
value="Experts",
interactive=True
)
after = gr.Slider(
minimum=1950,
maximum=2023,
step=1,
value=1960,
label="Publication date",
show_label=True,
interactive=True,
elem_id="date-papers",
visible=False
)
output_query = gr.Textbox(
label="Query used for retrieval",
show_label=True,
elem_id="reformulated-query",
lines=2,
interactive=False,
visible=False
)
output_language = gr.Textbox(
label="Language",
show_label=True,
elem_id="language",
lines=1,
interactive=False,
visible=False
)
dropdown_external_sources.change(
lambda x: gr.update(visible="OpenAlex" in x),
inputs=[dropdown_external_sources],
outputs=[after]
)
close_config_modal = gr.Button("Validate and Close", elem_id="close-config-modal")
close_config_modal.click(
fn=update_config_modal_visibility,
inputs=[config_open],
outputs=[config_modal, config_open]
)
config_button.click(
fn=update_config_modal_visibility,
inputs=[config_open],
outputs=[config_modal, config_open]
)
#---------------------------------------------------------------------------------------
# OTHER TABS
#---------------------------------------------------------------------------------------
with gr.Tab("About",elem_classes = "max-height other-tabs"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"""
### More info
- See more info at [https://climateqa.com](https://climateqa.com/docs/intro/)
- Feedbacks on this [form](https://forms.office.com/e/1Yzgxm6jbp)
### Citation
"""
)
with gr.Accordion(CITATION_LABEL,elem_id="citation", open = False,):
# # Display citation label and text)
gr.Textbox(
value=CITATION_TEXT,
label="",
interactive=False,
show_copy_button=True,
lines=len(CITATION_TEXT.split('\n')),
)
def start_chat(query,history,search_only):
history = history + [ChatMessage(role="user", content=query)]
if not search_only:
return (gr.update(interactive = False),gr.update(selected=1),history)
else:
return (gr.update(interactive = False),gr.update(selected=2),history)
def finish_chat():
return gr.update(interactive = True,value = "")
# Initialize visibility states
summary_visible = False
relevant_visible = False
# Functions to toggle visibility
def toggle_summary_visibility():
global summary_visible
summary_visible = not summary_visible
return gr.update(visible=summary_visible)
def toggle_relevant_visibility():
global relevant_visible
relevant_visible = not relevant_visible
return gr.update(visible=relevant_visible)
def change_completion_status(current_state):
current_state = 1 - current_state
return current_state
def update_sources_number_display(sources_textbox, figures_cards, current_graphs, papers_html):
sources_number = sources_textbox.count("<h2>")
figures_number = figures_cards.count("<h2>")
graphs_number = current_graphs.count("<iframe")
papers_number = papers_html.count("<h2>")
sources_notif_label = f"Sources ({sources_number})"
figures_notif_label = f"Figures ({figures_number})"
graphs_notif_label = f"Graphs ({graphs_number})"
papers_notif_label = f"Papers ({papers_number})"
recommended_content_notif_label = f"Recommended content ({figures_number + graphs_number + papers_number})"
return gr.update(label = recommended_content_notif_label), gr.update(label = sources_notif_label), gr.update(label = figures_notif_label), gr.update(label = graphs_notif_label), gr.update(label = papers_notif_label)
(textbox
.submit(start_chat, [textbox,chatbot, search_only], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_textbox")
.then(chat, [textbox,chatbot,dropdown_audience, dropdown_sources,dropdown_reports, dropdown_external_sources, search_only] ,[chatbot,sources_textbox,output_query,output_language, sources_raw, current_graphs],concurrency_limit = 8,api_name = "chat_textbox")
.then(finish_chat, None, [textbox],api_name = "finish_chat_textbox")
# .then(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_sources, tab_figures, tab_graphs, tab_papers] )
)
(examples_hidden
.change(start_chat, [examples_hidden,chatbot, search_only], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_examples")
.then(chat, [examples_hidden,chatbot,dropdown_audience, dropdown_sources,dropdown_reports, dropdown_external_sources, search_only] ,[chatbot,sources_textbox,output_query,output_language, sources_raw, current_graphs],concurrency_limit = 8,api_name = "chat_textbox")
.then(finish_chat, None, [textbox],api_name = "finish_chat_examples")
# .then(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_sources, tab_figures, tab_graphs, tab_papers] )
)
def change_sample_questions(key):
index = list(QUESTIONS.keys()).index(key)
visible_bools = [False] * len(samples)
visible_bools[index] = True
return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]
sources_raw.change(process_figures, inputs=[sources_raw], outputs=[figures_cards, gallery_component])
# update sources numbers
sources_textbox.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
figures_cards.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
current_graphs.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
papers_html.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
# other questions examples
dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
# search for papers
textbox.submit(find_papers,[textbox,after, dropdown_external_sources], [papers_html,citations_network,papers_summary])
examples_hidden.change(find_papers,[examples_hidden,after,dropdown_external_sources], [papers_html,citations_network,papers_summary])
# btn_summary.click(toggle_summary_visibility, outputs=summary_popup)
# btn_relevant_papers.click(toggle_relevant_visibility, outputs=relevant_popup)
demo.queue()
demo.launch(ssr_mode=False)
|