Spaces:
Runtime error
Runtime error
File size: 18,365 Bytes
5c718d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
import torch
from utils import *
import torch.nn.functional as F
import dino.vision_transformer as vits
import pdb
class LambdaLayer(nn.Module):
def __init__(self, lambd):
super(LambdaLayer, self).__init__()
self.lambd = lambd
def forward(self, x):
return self.lambd(x)
class DinoFeaturizer(nn.Module):
def __init__(self, dim, cfg):
super().__init__()
self.cfg = cfg
self.dim = dim
patch_size = self.cfg.dino_patch_size
self.patch_size = patch_size
self.feat_type = self.cfg.dino_feat_type
arch = self.cfg.model_type
self.model = vits.__dict__[arch](
patch_size=patch_size,
num_classes=0)
for p in self.model.parameters():
p.requires_grad = False
# pdb.set_trace()
self.model=self.model.cpu()
self.model.eval()
self.dropout = torch.nn.Dropout2d(p=.1)
if arch == "vit_small" and patch_size == 16:
url = "dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth"
elif arch == "vit_small" and patch_size == 8:
url = "dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth"
elif arch == "vit_base" and patch_size == 16:
url = "dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth"
elif arch == "vit_base" and patch_size == 8:
url = "dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth"
else:
raise ValueError("Unknown arch and patch size")
if cfg.pretrained_weights is not None:
state_dict = torch.load(cfg.pretrained_weights, map_location="cpu")
state_dict = state_dict["teacher"]
# remove `module.` prefix
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
# remove `backbone.` prefix induced by multicrop wrapper
state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
# state_dict = {k.replace("projection_head", "mlp"): v for k, v in state_dict.items()}
# state_dict = {k.replace("prototypes", "last_layer"): v for k, v in state_dict.items()}
msg = self.model.load_state_dict(state_dict, strict=False)
print('Pretrained weights found at {} and loaded with msg: {}'.format(cfg.pretrained_weights, msg))
else:
print("Since no pretrained weights have been provided, we load the reference pretrained DINO weights.")
state_dict = torch.hub.load_state_dict_from_url(url="https://dl.fbaipublicfiles.com/dino/" + url)
self.model.load_state_dict(state_dict, strict=True)
if arch == "vit_small":
self.n_feats = 384
else:
self.n_feats = 768
self.cluster1 = self.make_clusterer(self.n_feats)
self.proj_type = cfg.projection_type
if self.proj_type == "nonlinear":
self.cluster2 = self.make_nonlinear_clusterer(self.n_feats)
def make_clusterer(self, in_channels):
return torch.nn.Sequential(
torch.nn.Conv2d(in_channels, self.dim, (1, 1))) # ,
def make_nonlinear_clusterer(self, in_channels):
return torch.nn.Sequential(
torch.nn.Conv2d(in_channels, in_channels, (1, 1)),
torch.nn.ReLU(),
torch.nn.Conv2d(in_channels, self.dim, (1, 1)))
def forward(self, img, n=1, return_class_feat=False):
self.model.eval()
with torch.no_grad():
assert (img.shape[2] % self.patch_size == 0)
assert (img.shape[3] % self.patch_size == 0)
# get selected layer activations
feat, attn, qkv = self.model.get_intermediate_feat(img, n=n)
feat, attn, qkv = feat[0], attn[0], qkv[0]
feat_h = img.shape[2] // self.patch_size
feat_w = img.shape[3] // self.patch_size
if self.feat_type == "feat":
image_feat = feat[:, 1:, :].reshape(feat.shape[0], feat_h, feat_w, -1).permute(0, 3, 1, 2)
elif self.feat_type == "KK":
image_k = qkv[1, :, :, 1:, :].reshape(feat.shape[0], 6, feat_h, feat_w, -1)
B, H, I, J, D = image_k.shape
image_feat = image_k.permute(0, 1, 4, 2, 3).reshape(B, H * D, I, J)
else:
raise ValueError("Unknown feat type:{}".format(self.feat_type))
if return_class_feat:
return feat[:, :1, :].reshape(feat.shape[0], 1, 1, -1).permute(0, 3, 1, 2)
if self.proj_type is not None:
code = self.cluster1(self.dropout(image_feat))
if self.proj_type == "nonlinear":
code += self.cluster2(self.dropout(image_feat))
else:
code = image_feat
if self.cfg.dropout:
return self.dropout(image_feat), code
else:
return image_feat, code
class ResizeAndClassify(nn.Module):
def __init__(self, dim: int, size: int, n_classes: int):
super(ResizeAndClassify, self).__init__()
self.size = size
self.predictor = torch.nn.Sequential(
torch.nn.Conv2d(dim, n_classes, (1, 1)),
torch.nn.LogSoftmax(1))
def forward(self, x):
return F.interpolate(self.predictor.forward(x), self.size, mode="bilinear", align_corners=False)
class ClusterLookup(nn.Module):
def __init__(self, dim: int, n_classes: int):
super(ClusterLookup, self).__init__()
self.n_classes = n_classes
self.dim = dim
self.clusters = torch.nn.Parameter(torch.randn(n_classes, dim))
def reset_parameters(self):
with torch.no_grad():
self.clusters.copy_(torch.randn(self.n_classes, self.dim))
def forward(self, x, alpha, log_probs=False):
normed_clusters = F.normalize(self.clusters, dim=1)
normed_features = F.normalize(x, dim=1)
inner_products = torch.einsum("bchw,nc->bnhw", normed_features, normed_clusters)
if alpha is None:
cluster_probs = F.one_hot(torch.argmax(inner_products, dim=1), self.clusters.shape[0]) \
.permute(0, 3, 1, 2).to(torch.float32)
else:
cluster_probs = nn.functional.softmax(inner_products * alpha, dim=1)
cluster_loss = -(cluster_probs * inner_products).sum(1).mean()
if log_probs:
return nn.functional.log_softmax(inner_products * alpha, dim=1)
else:
return cluster_loss, cluster_probs
class FeaturePyramidNet(nn.Module):
@staticmethod
def _helper(x):
# TODO remove this hard coded 56
return F.interpolate(x, 56, mode="bilinear", align_corners=False).unsqueeze(-1)
def make_clusterer(self, in_channels):
return torch.nn.Sequential(
torch.nn.Conv2d(in_channels, self.dim, (1, 1)),
LambdaLayer(FeaturePyramidNet._helper))
def make_nonlinear_clusterer(self, in_channels):
return torch.nn.Sequential(
torch.nn.Conv2d(in_channels, in_channels, (1, 1)),
torch.nn.ReLU(),
torch.nn.Conv2d(in_channels, in_channels, (1, 1)),
torch.nn.ReLU(),
torch.nn.Conv2d(in_channels, self.dim, (1, 1)),
LambdaLayer(FeaturePyramidNet._helper))
def __init__(self, granularity, cut_model, dim, continuous):
super(FeaturePyramidNet, self).__init__()
self.layer_nums = [5, 6, 7]
self.spatial_resolutions = [7, 14, 28, 56]
self.feat_channels = [2048, 1024, 512, 3]
self.extra_channels = [128, 64, 32, 32]
self.granularity = granularity
self.encoder = NetWithActivations(cut_model, self.layer_nums)
self.dim = dim
self.continuous = continuous
self.n_feats = self.dim
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
assert granularity in {1, 2, 3, 4}
self.cluster1 = self.make_clusterer(self.feat_channels[0])
self.cluster1_nl = self.make_nonlinear_clusterer(self.feat_channels[0])
if granularity >= 2:
# self.conv1 = DoubleConv(self.feat_channels[0], self.extra_channels[0])
# self.conv2 = DoubleConv(self.extra_channels[0] + self.feat_channels[1], self.extra_channels[1])
self.conv2 = DoubleConv(self.feat_channels[0] + self.feat_channels[1], self.extra_channels[1])
self.cluster2 = self.make_clusterer(self.extra_channels[1])
if granularity >= 3:
self.conv3 = DoubleConv(self.extra_channels[1] + self.feat_channels[2], self.extra_channels[2])
self.cluster3 = self.make_clusterer(self.extra_channels[2])
if granularity >= 4:
self.conv4 = DoubleConv(self.extra_channels[2] + self.feat_channels[3], self.extra_channels[3])
self.cluster4 = self.make_clusterer(self.extra_channels[3])
def c(self, x, y):
return torch.cat([x, y], dim=1)
def forward(self, x):
with torch.no_grad():
feats = self.encoder(x)
low_res_feats = feats[self.layer_nums[-1]]
all_clusters = []
# all_clusters.append(self.cluster1(low_res_feats) + self.cluster1_nl(low_res_feats))
all_clusters.append(self.cluster1(low_res_feats))
if self.granularity >= 2:
# f1 = self.conv1(low_res_feats)
# f1_up = self.up(f1)
f1_up = self.up(low_res_feats)
f2 = self.conv2(self.c(f1_up, feats[self.layer_nums[-2]]))
all_clusters.append(self.cluster2(f2))
if self.granularity >= 3:
f2_up = self.up(f2)
f3 = self.conv3(self.c(f2_up, feats[self.layer_nums[-3]]))
all_clusters.append(self.cluster3(f3))
if self.granularity >= 4:
f3_up = self.up(f3)
final_size = self.spatial_resolutions[-1]
f4 = self.conv4(self.c(f3_up, F.interpolate(
x, (final_size, final_size), mode="bilinear", align_corners=False)))
all_clusters.append(self.cluster4(f4))
avg_code = torch.cat(all_clusters, 4).mean(4)
if self.continuous:
clusters = avg_code
else:
clusters = torch.log_softmax(avg_code, 1)
return low_res_feats, clusters
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(mid_channels),
nn.ReLU(),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU()
)
def forward(self, x):
return self.double_conv(x)
def norm(t):
return F.normalize(t, dim=1, eps=1e-10)
def average_norm(t):
return t / t.square().sum(1, keepdim=True).sqrt().mean()
def tensor_correlation(a, b):
return torch.einsum("nchw,ncij->nhwij", a, b)
def sample(t: torch.Tensor, coords: torch.Tensor):
return F.grid_sample(t, coords.permute(0, 2, 1, 3), padding_mode='border', align_corners=True)
@torch.jit.script
def super_perm(size: int, device: torch.device):
perm = torch.randperm(size, device=device, dtype=torch.long)
perm[perm == torch.arange(size, device=device)] += 1
return perm % size
def sample_nonzero_locations(t, target_size):
nonzeros = torch.nonzero(t)
coords = torch.zeros(target_size, dtype=nonzeros.dtype, device=nonzeros.device)
n = target_size[1] * target_size[2]
for i in range(t.shape[0]):
selected_nonzeros = nonzeros[nonzeros[:, 0] == i]
if selected_nonzeros.shape[0] == 0:
selected_coords = torch.randint(t.shape[1], size=(n, 2), device=nonzeros.device)
else:
selected_coords = selected_nonzeros[torch.randint(len(selected_nonzeros), size=(n,)), 1:]
coords[i, :, :, :] = selected_coords.reshape(target_size[1], target_size[2], 2)
coords = coords.to(torch.float32) / t.shape[1]
coords = coords * 2 - 1
return torch.flip(coords, dims=[-1])
class ContrastiveCorrelationLoss(nn.Module):
def __init__(self, cfg, ):
super(ContrastiveCorrelationLoss, self).__init__()
self.cfg = cfg
def standard_scale(self, t):
t1 = t - t.mean()
t2 = t1 / t1.std()
return t2
def helper(self, f1, f2, c1, c2, shift):
with torch.no_grad():
# Comes straight from backbone which is currently frozen. this saves mem.
fd = tensor_correlation(norm(f1), norm(f2))
if self.cfg.pointwise:
old_mean = fd.mean()
fd -= fd.mean([3, 4], keepdim=True)
fd = fd - fd.mean() + old_mean
cd = tensor_correlation(norm(c1), norm(c2))
if self.cfg.zero_clamp:
min_val = 0.0
else:
min_val = -9999.0
if self.cfg.stabalize:
loss = - cd.clamp(min_val, .8) * (fd - shift)
else:
loss = - cd.clamp(min_val) * (fd - shift)
return loss, cd
def forward(self,
orig_feats: torch.Tensor, orig_feats_pos: torch.Tensor,
orig_salience: torch.Tensor, orig_salience_pos: torch.Tensor,
orig_code: torch.Tensor, orig_code_pos: torch.Tensor,
):
coord_shape = [orig_feats.shape[0], self.cfg.feature_samples, self.cfg.feature_samples, 2]
if self.cfg.use_salience:
coords1_nonzero = sample_nonzero_locations(orig_salience, coord_shape)
coords2_nonzero = sample_nonzero_locations(orig_salience_pos, coord_shape)
coords1_reg = torch.rand(coord_shape, device=orig_feats.device) * 2 - 1
coords2_reg = torch.rand(coord_shape, device=orig_feats.device) * 2 - 1
mask = (torch.rand(coord_shape[:-1], device=orig_feats.device) > .1).unsqueeze(-1).to(torch.float32)
coords1 = coords1_nonzero * mask + coords1_reg * (1 - mask)
coords2 = coords2_nonzero * mask + coords2_reg * (1 - mask)
else:
coords1 = torch.rand(coord_shape, device=orig_feats.device) * 2 - 1
coords2 = torch.rand(coord_shape, device=orig_feats.device) * 2 - 1
feats = sample(orig_feats, coords1)
code = sample(orig_code, coords1)
feats_pos = sample(orig_feats_pos, coords2)
code_pos = sample(orig_code_pos, coords2)
pos_intra_loss, pos_intra_cd = self.helper(
feats, feats, code, code, self.cfg.pos_intra_shift)
pos_inter_loss, pos_inter_cd = self.helper(
feats, feats_pos, code, code_pos, self.cfg.pos_inter_shift)
neg_losses = []
neg_cds = []
for i in range(self.cfg.neg_samples):
perm_neg = super_perm(orig_feats.shape[0], orig_feats.device)
feats_neg = sample(orig_feats[perm_neg], coords2)
code_neg = sample(orig_code[perm_neg], coords2)
neg_inter_loss, neg_inter_cd = self.helper(
feats, feats_neg, code, code_neg, self.cfg.neg_inter_shift)
neg_losses.append(neg_inter_loss)
neg_cds.append(neg_inter_cd)
neg_inter_loss = torch.cat(neg_losses, axis=0)
neg_inter_cd = torch.cat(neg_cds, axis=0)
return (pos_intra_loss.mean(),
pos_intra_cd,
pos_inter_loss.mean(),
pos_inter_cd,
neg_inter_loss,
neg_inter_cd)
class Decoder(nn.Module):
def __init__(self, code_channels, feat_channels):
super().__init__()
self.linear = torch.nn.Conv2d(code_channels, feat_channels, (1, 1))
self.nonlinear = torch.nn.Sequential(
torch.nn.Conv2d(code_channels, code_channels, (1, 1)),
torch.nn.ReLU(),
torch.nn.Conv2d(code_channels, code_channels, (1, 1)),
torch.nn.ReLU(),
torch.nn.Conv2d(code_channels, feat_channels, (1, 1)))
def forward(self, x):
return self.linear(x) + self.nonlinear(x)
class NetWithActivations(torch.nn.Module):
def __init__(self, model, layer_nums):
super(NetWithActivations, self).__init__()
self.layers = nn.ModuleList(model.children())
self.layer_nums = []
for l in layer_nums:
if l < 0:
self.layer_nums.append(len(self.layers) + l)
else:
self.layer_nums.append(l)
self.layer_nums = set(sorted(self.layer_nums))
def forward(self, x):
activations = {}
for ln, l in enumerate(self.layers):
x = l(x)
if ln in self.layer_nums:
activations[ln] = x
return activations
class ContrastiveCRFLoss(nn.Module):
def __init__(self, n_samples, alpha, beta, gamma, w1, w2, shift):
super(ContrastiveCRFLoss, self).__init__()
self.alpha = alpha
self.beta = beta
self.gamma = gamma
self.w1 = w1
self.w2 = w2
self.n_samples = n_samples
self.shift = shift
def forward(self, guidance, clusters):
device = clusters.device
assert (guidance.shape[0] == clusters.shape[0])
assert (guidance.shape[2:] == clusters.shape[2:])
h = guidance.shape[2]
w = guidance.shape[3]
coords = torch.cat([
torch.randint(0, h, size=[1, self.n_samples], device=device),
torch.randint(0, w, size=[1, self.n_samples], device=device)], 0)
selected_guidance = guidance[:, :, coords[0, :], coords[1, :]]
coord_diff = (coords.unsqueeze(-1) - coords.unsqueeze(1)).square().sum(0).unsqueeze(0)
guidance_diff = (selected_guidance.unsqueeze(-1) - selected_guidance.unsqueeze(2)).square().sum(1)
sim_kernel = self.w1 * torch.exp(- coord_diff / (2 * self.alpha) - guidance_diff / (2 * self.beta)) + \
self.w2 * torch.exp(- coord_diff / (2 * self.gamma)) - self.shift
selected_clusters = clusters[:, :, coords[0, :], coords[1, :]]
cluster_sims = torch.einsum("nka,nkb->nab", selected_clusters, selected_clusters)
return -(cluster_sims * sim_kernel)
|