Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -31,7 +31,7 @@ ENGLISH_MODEL_NAME = "siebert/sentiment-roberta-large-english"
|
|
31 |
try:
|
32 |
multilingual_tokenizer = AutoTokenizer.from_pretrained(
|
33 |
MULTILINGUAL_TOKENIZER_NAME,
|
34 |
-
|
35 |
cache_dir=cache_dir
|
36 |
)
|
37 |
|
@@ -39,7 +39,7 @@ try:
|
|
39 |
"sentiment-analysis",
|
40 |
model=MULTILINGUAL_MODEL_NAME,
|
41 |
tokenizer=multilingual_tokenizer,
|
42 |
-
token=HF_TOKEN
|
43 |
)
|
44 |
except Exception as e:
|
45 |
raise RuntimeError(f"Failed to load multilingual model: {e}")
|
@@ -49,7 +49,7 @@ try:
|
|
49 |
english_model = pipeline(
|
50 |
"sentiment-analysis",
|
51 |
model=ENGLISH_MODEL_NAME,
|
52 |
-
token=HF_TOKEN
|
53 |
)
|
54 |
except Exception as e:
|
55 |
raise RuntimeError(f"Failed to load English sentiment model: {e}")
|
@@ -81,7 +81,10 @@ def analyze_sentiment(request: SentimentRequest):
|
|
81 |
raise HTTPException(status_code=400, detail="Text input cannot be empty.")
|
82 |
|
83 |
language = detect_language(text)
|
|
|
|
|
84 |
model = english_model if language == "en" else multilingual_model
|
|
|
85 |
result = model(text)
|
86 |
|
87 |
return SentimentResponse(
|
|
|
31 |
try:
|
32 |
multilingual_tokenizer = AutoTokenizer.from_pretrained(
|
33 |
MULTILINGUAL_TOKENIZER_NAME,
|
34 |
+
token=HF_TOKEN, # Pass token here
|
35 |
cache_dir=cache_dir
|
36 |
)
|
37 |
|
|
|
39 |
"sentiment-analysis",
|
40 |
model=MULTILINGUAL_MODEL_NAME,
|
41 |
tokenizer=multilingual_tokenizer,
|
42 |
+
token=HF_TOKEN # Pass token here
|
43 |
)
|
44 |
except Exception as e:
|
45 |
raise RuntimeError(f"Failed to load multilingual model: {e}")
|
|
|
49 |
english_model = pipeline(
|
50 |
"sentiment-analysis",
|
51 |
model=ENGLISH_MODEL_NAME,
|
52 |
+
token=HF_TOKEN # Pass token here
|
53 |
)
|
54 |
except Exception as e:
|
55 |
raise RuntimeError(f"Failed to load English sentiment model: {e}")
|
|
|
81 |
raise HTTPException(status_code=400, detail="Text input cannot be empty.")
|
82 |
|
83 |
language = detect_language(text)
|
84 |
+
|
85 |
+
# Use English model if detected language is English; otherwise, use multilingual model
|
86 |
model = english_model if language == "en" else multilingual_model
|
87 |
+
|
88 |
result = model(text)
|
89 |
|
90 |
return SentimentResponse(
|