Ehrii commited on
Commit
1d29239
·
1 Parent(s): 1b399da

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +7 -6
main.py CHANGED
@@ -25,20 +25,22 @@ app = FastAPI()
25
 
26
  # Model names
27
  MULTILINGUAL_MODEL_NAME = "Ehrii/sentiment"
 
28
  ENGLISH_MODEL_NAME = "siebert/sentiment-roberta-large-english"
29
 
30
  # Load multilingual sentiment model
31
  try:
32
  multilingual_tokenizer = AutoTokenizer.from_pretrained(
33
- MULTILINGUAL_MODEL_NAME,
34
- token=HF_TOKEN, # Use 'token' instead of deprecated 'use_auth_token'
35
  cache_dir=cache_dir
36
  )
 
37
  multilingual_model = pipeline(
38
  "sentiment-analysis",
39
  model=MULTILINGUAL_MODEL_NAME,
40
  tokenizer=multilingual_tokenizer,
41
- token=HF_TOKEN, # Use 'token' instead of deprecated 'use_auth_token'
42
  cache_dir=cache_dir
43
  )
44
  except Exception as e:
@@ -49,7 +51,7 @@ try:
49
  english_model = pipeline(
50
  "sentiment-analysis",
51
  model=ENGLISH_MODEL_NAME,
52
- token=HF_TOKEN, # Use 'token' instead of deprecated 'use_auth_token'
53
  cache_dir=cache_dir
54
  )
55
  except Exception as e:
@@ -82,7 +84,6 @@ def analyze_sentiment(request: SentimentRequest):
82
  raise HTTPException(status_code=400, detail="Text input cannot be empty.")
83
 
84
  language = detect_language(text)
85
- # Choose the appropriate model based on detected language
86
  model = english_model if language == "en" else multilingual_model
87
  result = model(text)
88
 
@@ -91,4 +92,4 @@ def analyze_sentiment(request: SentimentRequest):
91
  language_detected=language,
92
  sentiment=result[0]["label"].lower(),
93
  confidence_score=result[0]["score"],
94
- )
 
25
 
26
  # Model names
27
  MULTILINGUAL_MODEL_NAME = "Ehrii/sentiment"
28
+ MULTILINGUAL_TOKENIZER_NAME = "tabularisai/multilingual-sentiment-analysis" # Correct tokenizer
29
  ENGLISH_MODEL_NAME = "siebert/sentiment-roberta-large-english"
30
 
31
  # Load multilingual sentiment model
32
  try:
33
  multilingual_tokenizer = AutoTokenizer.from_pretrained(
34
+ MULTILINGUAL_TOKENIZER_NAME, # Use correct tokenizer
35
+ token=HF_TOKEN,
36
  cache_dir=cache_dir
37
  )
38
+
39
  multilingual_model = pipeline(
40
  "sentiment-analysis",
41
  model=MULTILINGUAL_MODEL_NAME,
42
  tokenizer=multilingual_tokenizer,
43
+ token=HF_TOKEN,
44
  cache_dir=cache_dir
45
  )
46
  except Exception as e:
 
51
  english_model = pipeline(
52
  "sentiment-analysis",
53
  model=ENGLISH_MODEL_NAME,
54
+ token=HF_TOKEN,
55
  cache_dir=cache_dir
56
  )
57
  except Exception as e:
 
84
  raise HTTPException(status_code=400, detail="Text input cannot be empty.")
85
 
86
  language = detect_language(text)
 
87
  model = english_model if language == "en" else multilingual_model
88
  result = model(text)
89
 
 
92
  language_detected=language,
93
  sentiment=result[0]["label"].lower(),
94
  confidence_score=result[0]["score"],
95
+ )