Spaces:
Running
Running
File size: 1,776 Bytes
95fc527 25b797a 20712aa 1294d13 25b797a 20712aa 25b797a 8aec507 1294d13 95fc527 20712aa 1294d13 b147674 20712aa b147674 25b797a b147674 25b797a 1294d13 b147674 20712aa b147674 25b797a b147674 25b797a b147674 25b797a b147674 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import os
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import pipeline, AutoTokenizer
from langdetect import detect, DetectorFactory
# Ensure consistent language detection results
DetectorFactory.seed = 0
# Set Hugging Face cache directory to a writable location
os.environ["HF_HOME"] = "/tmp/huggingface"
os.makedirs(os.environ["HF_HOME"], exist_ok=True)
app = FastAPI()
# Load the original tokenizer from the base model
original_tokenizer = AutoTokenizer.from_pretrained("tabularisai/multilingual-sentiment-analysis")
# Load the fine-tuned model and pass the tokenizer explicitly
multilingual_model = pipeline(
"sentiment-analysis",
model="models/",
tokenizer=original_tokenizer
)
# English model remains unchanged
english_model = pipeline("sentiment-analysis", model="siebert/sentiment-roberta-large-english")
class SentimentRequest(BaseModel):
text: str
class SentimentResponse(BaseModel):
original_text: str
language_detected: str
sentiment: str
confidence_score: float
def detect_language(text):
try:
return detect(text)
except Exception:
return "unknown"
@app.get("/")
def home():
return {"message": "Sentiment Analysis API is running!"}
@app.post("/analyze/", response_model=SentimentResponse)
def analyze_sentiment(request: SentimentRequest):
text = request.text
language = detect_language(text)
# Choose the appropriate model based on language
if language == "en":
result = english_model(text)
else:
result = multilingual_model(text)
return SentimentResponse(
original_text=text,
language_detected=language,
sentiment=result[0]["label"].lower(),
confidence_score=result[0]["score"],
)
|