import gradio as gr import spaces import numpy as np import random import spaces import torch from diffusers import SanaSprintPipeline dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" pipe = SanaSprintPipeline.from_pretrained( "Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers", torch_dtype=torch.bfloat16 ) pipe2 = SanaSprintPipeline.from_pretrained( "Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers", torch_dtype=torch.bfloat16 ) pipe.to(device) pipe2.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU(duration=5) def infer(prompt, model_size, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) # Choose the appropriate model based on selected model size selected_pipe = pipe if model_size == "0.6B" else pipe2 img = selected_pipe( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, output_type="pil" ) print(img) return img.images[0], seed # Different examples for each model size examples_06B = [ "a majestic castle on a floating island", "a robotic chef cooking in a futuristic kitchen", "a magical forest with glowing mushrooms" ] examples_16B = [ "a steampunk city with airships in the sky", "a photorealistic fox in a snowy landscape", "an underwater temple with ancient ruins" ] # We'll use the appropriate set based on the model selection css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# Sana Sprint""") # Add radio button for model selection model_size = gr.Radio( label="Model Size", choices=["0.6B", "1.6B"], value="0.6B", interactive=True ) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=1, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=2, ) with gr.Row(): examples_container = gr.Examples( examples = examples_06B, # Start with 0.6B examples fn = infer, inputs = [prompt, model_size], outputs = [result, seed], cache_examples="lazy", label="Example Prompts" ) # Update examples when model size changes def update_examples(model_choice): if model_choice == "0.6B": return gr.Examples.update(examples=examples_06B) else: return gr.Examples.update(examples=examples_16B) model_size.change(fn=update_examples, inputs=[model_size], outputs=[examples_container]) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [prompt, model_size, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], # Add model_size to inputs outputs = [result, seed] ) demo.launch()