|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
|
|
modelo = AutoModelForSequenceClassification.from_pretrained("Devarshi/Brain_Tumor_Classification") |
|
tokenizer = AutoTokenizer.from_pretrained("Devarshi/Brain_Tumor_Classification") |
|
|
|
|
|
def clasificar_tumor(texto): |
|
inputs = tokenizer(texto, return_tensors="pt") |
|
outputs = modelo(**inputs) |
|
logits = outputs.logits |
|
return torch.argmax(logits).item() |
|
|
|
|
|
interfaz = gr.Interface(fn=clasificar_tumor, inputs="text", outputs="text") |
|
|
|
|
|
interfaz.launch() |
|
|
|
|