Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
import gradio as gr | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from sklearn.decomposition import PCA | |
from torchvision import transforms as T | |
from sklearn.preprocessing import MinMaxScaler | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dino = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14') | |
dino.eval() | |
dino.to(device) | |
pca = PCA(n_components=3) | |
scaler = MinMaxScaler(clip=True) | |
def plot_img(img_array: np.array) -> go.Figure: | |
fig = px.imshow(img_array) | |
fig.update_layout( | |
xaxis=dict(showticklabels=False), | |
yaxis=dict(showticklabels=False) | |
) | |
return fig | |
def app_fn( | |
img: np.ndarray, | |
threshold: float, | |
object_larger_than_bg: bool | |
) -> go.Figure: | |
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) | |
patch_h = 40 | |
patch_w = 40 | |
transform = T.Compose([ | |
T.Resize((14 * patch_h, 14 * patch_w)), | |
T.Normalize(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), | |
]) | |
img = torch.from_numpy(img).type(torch.float).permute(2, 0, 1) / 255 | |
img_tensor = transform(img).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
out = dino.forward_features(img_tensor) | |
features = out["x_prenorm"][:, 1:, :] | |
features = features.squeeze(0) | |
features = features.cpu().numpy() | |
pca_features = pca.fit_transform(features) | |
pca_features = scaler.fit_transform(pca_features) | |
if object_larger_than_bg: | |
pca_features_bg = pca_features[:, 0] > threshold | |
else: | |
pca_features_bg = pca_features[:, 0] < threshold | |
pca_features_fg = ~pca_features_bg | |
pca_features_fg_seg = pca.fit_transform(features[pca_features_fg]) | |
pca_features_fg_seg = scaler.fit_transform(pca_features_fg_seg) | |
pca_features_rgb = np.zeros((patch_h * patch_w, 3)) | |
pca_features_rgb[pca_features_bg] = 0 | |
pca_features_rgb[pca_features_fg] = pca_features_fg_seg | |
pca_features_rgb = pca_features_rgb.reshape(patch_h, patch_w, 3) | |
fig_pca = plot_img(pca_features_rgb) | |
return fig_pca | |
if __name__=="__main__": | |
title = "DINOv2 Features Visualization" | |
with gr.Blocks(title=title) as demo: | |
gr.Markdown(f"# {title}") | |
with gr.Row(): | |
threshold = gr.Slider(minimum=0, maximum=1, value=0.6, step=0.05, label="Threshold") | |
object_larger_than_bg = gr.Checkbox(label="Object Larger than Background", value=False) | |
btn = gr.Button(label="Visualize") | |
with gr.Row(): | |
img = gr.Image() | |
fig_pca = gr.Plot(label="PCA Features") | |
btn.click(fn=app_fn, inputs=[img, threshold, object_larger_than_bg], outputs=[fig_pca]) | |
examples = gr.Examples( | |
examples=[ | |
["assets/neca-the-cat.jpeg", 0.6, True], | |
["assets/dog.png", 0.7, False] | |
], | |
inputs=[img, threshold, object_larger_than_bg], | |
outputs=[fig_pca], | |
fn=app_fn, | |
cache_examples=True | |
) | |
demo.launch(share=True, debug=True) | |