jonathanjordan21 commited on
Commit
678afe5
·
verified ·
1 Parent(s): 00820a7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -16
app.py CHANGED
@@ -362,8 +362,8 @@ model_ids = [
362
  "sentence-transformers/distiluse-base-multilingual-cased-v2",
363
  "Alibaba-NLP/gte-multilingual-base",
364
  "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
 
365
  "BAAI/bge-reranker-v2-m3",
366
- "jinaai/jina-reranker-v2-base-multilingual"
367
  ]
368
  # model_id = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
369
  # model_id = "Alibaba-NLP/gte-multilingual-base"
@@ -373,20 +373,28 @@ model_ids = [
373
  # model_id = "sentence-transformers/distiluse-base-multilingual-cased-v2"
374
 
375
  model_id = model_ids[-1]
 
 
376
 
377
- if model_id in model_ids[-2:]:
378
- model = CrossEncoder(
379
- # "jinaai/jina-reranker-v2-base-multilingual",
380
- "BAAI/bge-reranker-v2-m3",
381
- automodel_args={"torch_dtype": "auto"},
382
- trust_remote_code=True,
383
- )
384
- else:
385
- model = SentenceTransformer(model_id, trust_remote_code=True)
 
 
 
 
 
 
 
 
 
386
 
387
- # codes_emb = model.encode([x[6:] for x in codes])
388
- codes_emb = model.encode([x["examples"] for x in examples])#.mean(axis=1)
389
- # codes_emb = np.mean([model.encode(x["examples"]) for x in examples], axis=1)
390
  # for x in examples:
391
  # codes_emb.append(model.encode(x["examples"]))
392
  # codes_emb = np.mean(codes_emb, axis=1)
@@ -690,10 +698,11 @@ def reload(chosen_model_id):
690
  global codes_emb
691
 
692
  if chosen_model_id != model_id:
693
- model = SentenceTransformer(chosen_model_id, trust_remote_code=True)
694
- model_id = chosen_model_id
 
695
  # codes_emb = model.encode([x[6:] for x in codes])
696
- codes_emb = model.encode([x["examples"] for x in examples])#.mean(axis=1)
697
  # codes_emb = np.mean([model.encode(x["examples"]) for x in examples], axis=1)
698
  return f"Model {chosen_model_id} has been succesfully loaded!"
699
  return f"Model {chosen_model_id} is ready!"
 
362
  "sentence-transformers/distiluse-base-multilingual-cased-v2",
363
  "Alibaba-NLP/gte-multilingual-base",
364
  "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
365
+ "jinaai/jina-reranker-v2-base-multilingual",
366
  "BAAI/bge-reranker-v2-m3",
 
367
  ]
368
  # model_id = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
369
  # model_id = "Alibaba-NLP/gte-multilingual-base"
 
373
  # model_id = "sentence-transformers/distiluse-base-multilingual-cased-v2"
374
 
375
  model_id = model_ids[-1]
376
+ model = None
377
+ codes_emb = None
378
 
379
+ def load_model(model_id):
380
+ global model
381
+ global codes_emb
382
+ if model_id in model_ids[-2:]:
383
+ model = CrossEncoder(
384
+ # "jinaai/jina-reranker-v2-base-multilingual",
385
+ # "BAAI/bge-reranker-v2-m3",
386
+ model_id,
387
+ automodel_args={"torch_dtype": "auto"},
388
+ trust_remote_code=True,
389
+ )
390
+ else:
391
+ model = SentenceTransformer(model_id, trust_remote_code=True)
392
+ # codes_emb = model.encode([x[6:] for x in codes])
393
+ codes_emb = model.encode([x["examples"] for x in examples])#.mean(axis=1)
394
+ # codes_emb = np.mean([model.encode(x["examples"]) for x in examples], axis=1)
395
+
396
+ load_model(model_id)
397
 
 
 
 
398
  # for x in examples:
399
  # codes_emb.append(model.encode(x["examples"]))
400
  # codes_emb = np.mean(codes_emb, axis=1)
 
698
  global codes_emb
699
 
700
  if chosen_model_id != model_id:
701
+ load_model(model_id)
702
+ # model = SentenceTransformer(chosen_model_id, trust_remote_code=True)
703
+ # model_id = chosen_model_id
704
  # codes_emb = model.encode([x[6:] for x in codes])
705
+ # codes_emb = model.encode([x["examples"] for x in examples])#.mean(axis=1)
706
  # codes_emb = np.mean([model.encode(x["examples"]) for x in examples], axis=1)
707
  return f"Model {chosen_model_id} has been succesfully loaded!"
708
  return f"Model {chosen_model_id} is ready!"