Spaces:
Running
on
Zero
Running
on
Zero
| import numpy as np | |
| from typing import * | |
| from numbers import Number | |
| from ._helpers import batched | |
| from .._helpers import no_warnings | |
| __all__ = [ | |
| 'perspective', | |
| 'perspective_from_fov', | |
| 'perspective_from_fov_xy', | |
| 'intrinsics_from_focal_center', | |
| 'intrinsics_from_fov', | |
| 'fov_to_focal', | |
| 'focal_to_fov', | |
| 'intrinsics_to_fov', | |
| 'view_look_at', | |
| 'extrinsics_look_at', | |
| 'perspective_to_intrinsics', | |
| 'perspective_to_near_far', | |
| 'intrinsics_to_perspective', | |
| 'extrinsics_to_view', | |
| 'view_to_extrinsics', | |
| 'normalize_intrinsics', | |
| 'crop_intrinsics', | |
| 'pixel_to_uv', | |
| 'pixel_to_ndc', | |
| 'uv_to_pixel', | |
| 'project_depth', | |
| 'depth_buffer_to_linear', | |
| 'unproject_cv', | |
| 'unproject_gl', | |
| 'project_cv', | |
| 'project_gl', | |
| 'quaternion_to_matrix', | |
| 'axis_angle_to_matrix', | |
| 'matrix_to_quaternion', | |
| 'extrinsics_to_essential', | |
| 'euler_axis_angle_rotation', | |
| 'euler_angles_to_matrix', | |
| 'skew_symmetric', | |
| 'rotation_matrix_from_vectors', | |
| 'ray_intersection', | |
| 'se3_matrix', | |
| 'slerp_quaternion', | |
| 'slerp_vector', | |
| 'lerp', | |
| 'lerp_se3_matrix', | |
| 'piecewise_lerp', | |
| 'piecewise_lerp_se3_matrix', | |
| 'apply_transform' | |
| ] | |
| def perspective( | |
| fov_y: Union[float, np.ndarray], | |
| aspect: Union[float, np.ndarray], | |
| near: Union[float, np.ndarray], | |
| far: Union[float, np.ndarray] | |
| ) -> np.ndarray: | |
| """ | |
| Get OpenGL perspective matrix | |
| Args: | |
| fov_y (float | np.ndarray): field of view in y axis | |
| aspect (float | np.ndarray): aspect ratio | |
| near (float | np.ndarray): near plane to clip | |
| far (float | np.ndarray): far plane to clip | |
| Returns: | |
| (np.ndarray): [..., 4, 4] perspective matrix | |
| """ | |
| N = fov_y.shape[0] | |
| ret = np.zeros((N, 4, 4), dtype=fov_y.dtype) | |
| ret[:, 0, 0] = 1. / (np.tan(fov_y / 2) * aspect) | |
| ret[:, 1, 1] = 1. / (np.tan(fov_y / 2)) | |
| ret[:, 2, 2] = (near + far) / (near - far) | |
| ret[:, 2, 3] = 2. * near * far / (near - far) | |
| ret[:, 3, 2] = -1. | |
| return ret | |
| def perspective_from_fov( | |
| fov: Union[float, np.ndarray], | |
| width: Union[int, np.ndarray], | |
| height: Union[int, np.ndarray], | |
| near: Union[float, np.ndarray], | |
| far: Union[float, np.ndarray] | |
| ) -> np.ndarray: | |
| """ | |
| Get OpenGL perspective matrix from field of view in largest dimension | |
| Args: | |
| fov (float | np.ndarray): field of view in largest dimension | |
| width (int | np.ndarray): image width | |
| height (int | np.ndarray): image height | |
| near (float | np.ndarray): near plane to clip | |
| far (float | np.ndarray): far plane to clip | |
| Returns: | |
| (np.ndarray): [..., 4, 4] perspective matrix | |
| """ | |
| fov_y = 2 * np.arctan(np.tan(fov / 2) * height / np.maximum(width, height)) | |
| aspect = width / height | |
| return perspective(fov_y, aspect, near, far) | |
| def perspective_from_fov_xy( | |
| fov_x: Union[float, np.ndarray], | |
| fov_y: Union[float, np.ndarray], | |
| near: Union[float, np.ndarray], | |
| far: Union[float, np.ndarray] | |
| ) -> np.ndarray: | |
| """ | |
| Get OpenGL perspective matrix from field of view in x and y axis | |
| Args: | |
| fov_x (float | np.ndarray): field of view in x axis | |
| fov_y (float | np.ndarray): field of view in y axis | |
| near (float | np.ndarray): near plane to clip | |
| far (float | np.ndarray): far plane to clip | |
| Returns: | |
| (np.ndarray): [..., 4, 4] perspective matrix | |
| """ | |
| aspect = np.tan(fov_x / 2) / np.tan(fov_y / 2) | |
| return perspective(fov_y, aspect, near, far) | |
| def intrinsics_from_focal_center( | |
| fx: Union[float, np.ndarray], | |
| fy: Union[float, np.ndarray], | |
| cx: Union[float, np.ndarray], | |
| cy: Union[float, np.ndarray], | |
| dtype: Optional[np.dtype] = np.float32 | |
| ) -> np.ndarray: | |
| """ | |
| Get OpenCV intrinsics matrix | |
| Returns: | |
| (np.ndarray): [..., 3, 3] OpenCV intrinsics matrix | |
| """ | |
| if any(isinstance(x, np.ndarray) for x in (fx, fy, cx, cy)): | |
| dtype = np.result_type(fx, fy, cx, cy) | |
| fx, fy, cx, cy = np.broadcast_arrays(fx, fy, cx, cy) | |
| ret = np.zeros((*fx.shape, 3, 3), dtype=dtype) | |
| ret[..., 0, 0] = fx | |
| ret[..., 1, 1] = fy | |
| ret[..., 0, 2] = cx | |
| ret[..., 1, 2] = cy | |
| ret[..., 2, 2] = 1. | |
| return ret | |
| def intrinsics_from_fov( | |
| fov_max: Union[float, np.ndarray] = None, | |
| fov_min: Union[float, np.ndarray] = None, | |
| fov_x: Union[float, np.ndarray] = None, | |
| fov_y: Union[float, np.ndarray] = None, | |
| width: Union[int, np.ndarray] = None, | |
| height: Union[int, np.ndarray] = None, | |
| ) -> np.ndarray: | |
| """ | |
| Get normalized OpenCV intrinsics matrix from given field of view. | |
| You can provide either fov_max, fov_min, fov_x or fov_y | |
| Args: | |
| width (int | np.ndarray): image width | |
| height (int | np.ndarray): image height | |
| fov_max (float | np.ndarray): field of view in largest dimension | |
| fov_min (float | np.ndarray): field of view in smallest dimension | |
| fov_x (float | np.ndarray): field of view in x axis | |
| fov_y (float | np.ndarray): field of view in y axis | |
| Returns: | |
| (np.ndarray): [..., 3, 3] OpenCV intrinsics matrix | |
| """ | |
| if fov_max is not None: | |
| fx = np.maximum(width, height) / width / (2 * np.tan(fov_max / 2)) | |
| fy = np.maximum(width, height) / height / (2 * np.tan(fov_max / 2)) | |
| elif fov_min is not None: | |
| fx = np.minimum(width, height) / width / (2 * np.tan(fov_min / 2)) | |
| fy = np.minimum(width, height) / height / (2 * np.tan(fov_min / 2)) | |
| elif fov_x is not None and fov_y is not None: | |
| fx = 1 / (2 * np.tan(fov_x / 2)) | |
| fy = 1 / (2 * np.tan(fov_y / 2)) | |
| elif fov_x is not None: | |
| fx = 1 / (2 * np.tan(fov_x / 2)) | |
| fy = fx * width / height | |
| elif fov_y is not None: | |
| fy = 1 / (2 * np.tan(fov_y / 2)) | |
| fx = fy * height / width | |
| cx = 0.5 | |
| cy = 0.5 | |
| ret = intrinsics_from_focal_center(fx, fy, cx, cy) | |
| return ret | |
| def focal_to_fov(focal: np.ndarray): | |
| return 2 * np.arctan(0.5 / focal) | |
| def fov_to_focal(fov: np.ndarray): | |
| return 0.5 / np.tan(fov / 2) | |
| def intrinsics_to_fov(intrinsics: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: | |
| fov_x = focal_to_fov(intrinsics[..., 0, 0]) | |
| fov_y = focal_to_fov(intrinsics[..., 1, 1]) | |
| return fov_x, fov_y | |
| def view_look_at( | |
| eye: np.ndarray, | |
| look_at: np.ndarray, | |
| up: np.ndarray | |
| ) -> np.ndarray: | |
| """ | |
| Get OpenGL view matrix looking at something | |
| Args: | |
| eye (np.ndarray): [..., 3] the eye position | |
| look_at (np.ndarray): [..., 3] the position to look at | |
| up (np.ndarray): [..., 3] head up direction (y axis in screen space). Not necessarily othogonal to view direction | |
| Returns: | |
| (np.ndarray): [..., 4, 4], view matrix | |
| """ | |
| z = eye - look_at | |
| x = np.cross(up, z) | |
| y = np.cross(z, x) | |
| # x = np.cross(y, z) | |
| x = x / np.linalg.norm(x, axis=-1, keepdims=True) | |
| y = y / np.linalg.norm(y, axis=-1, keepdims=True) | |
| z = z / np.linalg.norm(z, axis=-1, keepdims=True) | |
| R = np.stack([x, y, z], axis=-2) | |
| t = -np.matmul(R, eye[..., None]) | |
| return np.concatenate([ | |
| np.concatenate([R, t], axis=-1), | |
| np.array([[[0., 0., 0., 1.]]]).repeat(eye.shape[0], axis=0) | |
| ], axis=-2) | |
| def extrinsics_look_at( | |
| eye: np.ndarray, | |
| look_at: np.ndarray, | |
| up: np.ndarray | |
| ) -> np.ndarray: | |
| """ | |
| Get OpenCV extrinsics matrix looking at something | |
| Args: | |
| eye (np.ndarray): [..., 3] the eye position | |
| look_at (np.ndarray): [..., 3] the position to look at | |
| up (np.ndarray): [..., 3] head up direction (-y axis in screen space). Not necessarily othogonal to view direction | |
| Returns: | |
| (np.ndarray): [..., 4, 4], extrinsics matrix | |
| """ | |
| z = look_at - eye | |
| x = np.cross(-up, z) | |
| y = np.cross(z, x) | |
| # x = np.cross(y, z) | |
| x = x / np.linalg.norm(x, axis=-1, keepdims=True) | |
| y = y / np.linalg.norm(y, axis=-1, keepdims=True) | |
| z = z / np.linalg.norm(z, axis=-1, keepdims=True) | |
| R = np.stack([x, y, z], axis=-2) | |
| t = -np.matmul(R, eye[..., None]) | |
| return np.concatenate([ | |
| np.concatenate([R, t], axis=-1), | |
| np.array([[[0., 0., 0., 1.]]], dtype=eye.dtype).repeat(eye.shape[0], axis=0) | |
| ], axis=-2) | |
| def perspective_to_intrinsics( | |
| perspective: np.ndarray | |
| ) -> np.ndarray: | |
| """ | |
| OpenGL perspective matrix to OpenCV intrinsics | |
| Args: | |
| perspective (np.ndarray): [..., 4, 4] OpenGL perspective matrix | |
| Returns: | |
| (np.ndarray): shape [..., 3, 3] OpenCV intrinsics | |
| """ | |
| ret = np.array([[0.5, 0., 0.5], [0., -0.5, 0.5], [0., 0., 1.]], dtype=perspective.dtype) \ | |
| return ret | |
| def perspective_to_near_far(perspective: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: | |
| """ | |
| Get near and far planes from OpenGL perspective matrix | |
| Args: | |
| """ | |
| a, b = perspective[..., 2, 2], perspective[..., 2, 3] | |
| near, far = b / (a - 1), b / (a + 1) | |
| return near, far | |
| def intrinsics_to_perspective( | |
| intrinsics: np.ndarray, | |
| near: Union[float, np.ndarray], | |
| far: Union[float, np.ndarray], | |
| ) -> np.ndarray: | |
| """ | |
| OpenCV intrinsics to OpenGL perspective matrix | |
| NOTE: not work for tile-shifting intrinsics currently | |
| Args: | |
| intrinsics (np.ndarray): [..., 3, 3] OpenCV intrinsics matrix | |
| near (float | np.ndarray): [...] near plane to clip | |
| far (float | np.ndarray): [...] far plane to clip | |
| Returns: | |
| (np.ndarray): [..., 4, 4] OpenGL perspective matrix | |
| """ | |
| N = intrinsics.shape[0] | |
| fx, fy = intrinsics[:, 0, 0], intrinsics[:, 1, 1] | |
| cx, cy = intrinsics[:, 0, 2], intrinsics[:, 1, 2] | |
| ret = np.zeros((N, 4, 4), dtype=intrinsics.dtype) | |
| ret[:, 0, 0] = 2 * fx | |
| ret[:, 1, 1] = 2 * fy | |
| ret[:, 0, 2] = -2 * cx + 1 | |
| ret[:, 1, 2] = 2 * cy - 1 | |
| ret[:, 2, 2] = (near + far) / (near - far) | |
| ret[:, 2, 3] = 2. * near * far / (near - far) | |
| ret[:, 3, 2] = -1. | |
| return ret | |
| def extrinsics_to_view( | |
| extrinsics: np.ndarray | |
| ) -> np.ndarray: | |
| """ | |
| OpenCV camera extrinsics to OpenGL view matrix | |
| Args: | |
| extrinsics (np.ndarray): [..., 4, 4] OpenCV camera extrinsics matrix | |
| Returns: | |
| (np.ndarray): [..., 4, 4] OpenGL view matrix | |
| """ | |
| return extrinsics * np.array([1, -1, -1, 1], dtype=extrinsics.dtype)[:, None] | |
| def view_to_extrinsics( | |
| view: np.ndarray | |
| ) -> np.ndarray: | |
| """ | |
| OpenGL view matrix to OpenCV camera extrinsics | |
| Args: | |
| view (np.ndarray): [..., 4, 4] OpenGL view matrix | |
| Returns: | |
| (np.ndarray): [..., 4, 4] OpenCV camera extrinsics matrix | |
| """ | |
| return view * np.array([1, -1, -1, 1], dtype=view.dtype)[:, None] | |
| def normalize_intrinsics( | |
| intrinsics: np.ndarray, | |
| width: Union[int, np.ndarray], | |
| height: Union[int, np.ndarray], | |
| integer_pixel_centers: bool = True | |
| ) -> np.ndarray: | |
| """ | |
| Normalize intrinsics from pixel cooridnates to uv coordinates | |
| Args: | |
| intrinsics (np.ndarray): [..., 3, 3] camera intrinsics(s) to normalize | |
| width (int | np.ndarray): [...] image width(s) | |
| height (int | np.ndarray): [...] image height(s) | |
| integer_pixel_centers (bool): whether the integer pixel coordinates are at the center of the pixel. If False, the integer coordinates are at the left-top corner of the pixel. | |
| Returns: | |
| (np.ndarray): [..., 3, 3] normalized camera intrinsics(s) | |
| """ | |
| zeros = np.zeros_like(width) | |
| ones = np.ones_like(width) | |
| if integer_pixel_centers: | |
| transform = np.stack([ | |
| 1 / width, zeros, 0.5 / width, | |
| zeros, 1 / height, 0.5 / height, | |
| zeros, zeros, ones | |
| ]).reshape(*zeros.shape, 3, 3) | |
| else: | |
| transform = np.stack([ | |
| 1 / width, zeros, zeros, | |
| zeros, 1 / height, zeros, | |
| zeros, zeros, ones | |
| ]).reshape(*zeros.shape, 3, 3) | |
| return transform @ intrinsics | |
| def crop_intrinsics( | |
| intrinsics: np.ndarray, | |
| width: Union[int, np.ndarray], | |
| height: Union[int, np.ndarray], | |
| left: Union[int, np.ndarray], | |
| top: Union[int, np.ndarray], | |
| crop_width: Union[int, np.ndarray], | |
| crop_height: Union[int, np.ndarray] | |
| ) -> np.ndarray: | |
| """ | |
| Evaluate the new intrinsics(s) after crop the image: cropped_img = img[top:top+crop_height, left:left+crop_width] | |
| Args: | |
| intrinsics (np.ndarray): [..., 3, 3] camera intrinsics(s) to crop | |
| width (int | np.ndarray): [...] image width(s) | |
| height (int | np.ndarray): [...] image height(s) | |
| left (int | np.ndarray): [...] left crop boundary | |
| top (int | np.ndarray): [...] top crop boundary | |
| crop_width (int | np.ndarray): [...] crop width | |
| crop_height (int | np.ndarray): [...] crop height | |
| Returns: | |
| (np.ndarray): [..., 3, 3] cropped camera intrinsics(s) | |
| """ | |
| zeros = np.zeros_like(width) | |
| ones = np.ones_like(width) | |
| transform = np.stack([ | |
| width / crop_width, zeros, -left / crop_width, | |
| zeros, height / crop_height, -top / crop_height, | |
| zeros, zeros, ones | |
| ]).reshape(*zeros.shape, 3, 3) | |
| return transform @ intrinsics | |
| def pixel_to_uv( | |
| pixel: np.ndarray, | |
| width: Union[int, np.ndarray], | |
| height: Union[int, np.ndarray] | |
| ) -> np.ndarray: | |
| """ | |
| Args: | |
| pixel (np.ndarray): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1) | |
| width (int | np.ndarray): [...] image width(s) | |
| height (int | np.ndarray): [...] image height(s) | |
| Returns: | |
| (np.ndarray): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1) | |
| """ | |
| if not np.issubdtype(pixel.dtype, np.floating): | |
| pixel = pixel.astype(np.float32) | |
| dtype = pixel.dtype | |
| uv = (pixel + np.array(0.5, dtype=dtype)) / np.stack([width, height], axis=-1) | |
| return uv | |
| def uv_to_pixel( | |
| uv: np.ndarray, | |
| width: Union[int, np.ndarray], | |
| height: Union[int, np.ndarray] | |
| ) -> np.ndarray: | |
| """ | |
| Args: | |
| pixel (np.ndarray): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1) | |
| width (int | np.ndarray): [...] image width(s) | |
| height (int | np.ndarray): [...] image height(s) | |
| Returns: | |
| (np.ndarray): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1) | |
| """ | |
| pixel = uv * np.stack([width, height], axis=-1).astype(uv.dtype) - 0.5 | |
| return pixel | |
| def pixel_to_ndc( | |
| pixel: np.ndarray, | |
| width: Union[int, np.ndarray], | |
| height: Union[int, np.ndarray] | |
| ) -> np.ndarray: | |
| """ | |
| Args: | |
| pixel (np.ndarray): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1) | |
| width (int | np.ndarray): [...] image width(s) | |
| height (int | np.ndarray): [...] image height(s) | |
| Returns: | |
| (np.ndarray): [..., 2] pixel coordinrates defined in ndc space, the range is (-1, 1) | |
| """ | |
| if not np.issubdtype(pixel.dtype, np.floating): | |
| pixel = pixel.astype(np.float32) | |
| dtype = pixel.dtype | |
| ndc = (pixel + np.array(0.5, dtype=dtype)) / (np.stack([width, height], dim=-1) * np.array([2, -2], dtype=dtype)) \ | |
| + np.array([-1, 1], dtype=dtype) | |
| return ndc | |
| def project_depth( | |
| depth: np.ndarray, | |
| near: Union[float, np.ndarray], | |
| far: Union[float, np.ndarray] | |
| ) -> np.ndarray: | |
| """ | |
| Project linear depth to depth value in screen space | |
| Args: | |
| depth (np.ndarray): [...] depth value | |
| near (float | np.ndarray): [...] near plane to clip | |
| far (float | np.ndarray): [...] far plane to clip | |
| Returns: | |
| (np.ndarray): [..., 1] depth value in screen space, value ranging in [0, 1] | |
| """ | |
| return (far - near * far / depth) / (far - near) | |
| def depth_buffer_to_linear( | |
| depth_buffer: np.ndarray, | |
| near: Union[float, np.ndarray], | |
| far: Union[float, np.ndarray] | |
| ) -> np.ndarray: | |
| """ | |
| OpenGL depth buffer to linear depth | |
| Args: | |
| depth_buffer (np.ndarray): [...] depth value | |
| near (float | np.ndarray): [...] near plane to clip | |
| far (float | np.ndarray): [...] far plane to clip | |
| Returns: | |
| (np.ndarray): [..., 1] linear depth | |
| """ | |
| return near * far / (far - (far - near) * depth_buffer) | |
| def project_gl( | |
| points: np.ndarray, | |
| model: np.ndarray = None, | |
| view: np.ndarray = None, | |
| perspective: np.ndarray = None | |
| ) -> Tuple[np.ndarray, np.ndarray]: | |
| """ | |
| Project 3D points to 2D following the OpenGL convention (except for row major matrice) | |
| Args: | |
| points (np.ndarray): [..., N, 3] or [..., N, 4] 3D points to project, if the last | |
| dimension is 4, the points are assumed to be in homogeneous coordinates | |
| model (np.ndarray): [..., 4, 4] model matrix | |
| view (np.ndarray): [..., 4, 4] view matrix | |
| perspective (np.ndarray): [..., 4, 4] perspective matrix | |
| Returns: | |
| scr_coord (np.ndarray): [..., N, 3] screen space coordinates, value ranging in [0, 1]. | |
| The origin (0., 0., 0.) is corresponding to the left & bottom & nearest | |
| linear_depth (np.ndarray): [..., N] linear depth | |
| """ | |
| assert perspective is not None, "perspective matrix is required" | |
| if points.shape[-1] == 3: | |
| points = np.concatenate([points, np.ones_like(points[..., :1])], axis=-1) | |
| if model is not None: | |
| points = points @ model.swapaxes(-1, -2) | |
| if view is not None: | |
| points = points @ view.swapaxes(-1, -2) | |
| clip_coord = points @ perspective.swapaxes(-1, -2) | |
| ndc_coord = clip_coord[..., :3] / clip_coord[..., 3:] | |
| scr_coord = ndc_coord * 0.5 + 0.5 | |
| linear_depth = clip_coord[..., 3] | |
| return scr_coord, linear_depth | |
| def project_cv( | |
| points: np.ndarray, | |
| extrinsics: np.ndarray = None, | |
| intrinsics: np.ndarray = None | |
| ) -> Tuple[np.ndarray, np.ndarray]: | |
| """ | |
| Project 3D points to 2D following the OpenCV convention | |
| Args: | |
| points (np.ndarray): [..., N, 3] or [..., N, 4] 3D points to project, if the last | |
| dimension is 4, the points are assumed to be in homogeneous coordinates | |
| extrinsics (np.ndarray): [..., 4, 4] extrinsics matrix | |
| intrinsics (np.ndarray): [..., 3, 3] intrinsics matrix | |
| Returns: | |
| uv_coord (np.ndarray): [..., N, 2] uv coordinates, value ranging in [0, 1]. | |
| The origin (0., 0.) is corresponding to the left & top | |
| linear_depth (np.ndarray): [..., N] linear depth | |
| """ | |
| assert intrinsics is not None, "intrinsics matrix is required" | |
| if points.shape[-1] == 3: | |
| points = np.concatenate([points, np.ones_like(points[..., :1])], axis=-1) | |
| if extrinsics is not None: | |
| points = points @ extrinsics.swapaxes(-1, -2) | |
| points = points[..., :3] @ intrinsics.swapaxes(-1, -2) | |
| with no_warnings(): | |
| uv_coord = points[..., :2] / points[..., 2:] | |
| linear_depth = points[..., 2] | |
| return uv_coord, linear_depth | |
| def unproject_gl( | |
| screen_coord: np.ndarray, | |
| model: np.ndarray = None, | |
| view: np.ndarray = None, | |
| perspective: np.ndarray = None | |
| ) -> np.ndarray: | |
| """ | |
| Unproject screen space coordinates to 3D view space following the OpenGL convention (except for row major matrice) | |
| Args: | |
| screen_coord (np.ndarray): [..., N, 3] screen space coordinates, value ranging in [0, 1]. | |
| The origin (0., 0., 0.) is corresponding to the left & bottom & nearest | |
| model (np.ndarray): [..., 4, 4] model matrix | |
| view (np.ndarray): [..., 4, 4] view matrix | |
| perspective (np.ndarray): [..., 4, 4] perspective matrix | |
| Returns: | |
| points (np.ndarray): [..., N, 3] 3d points | |
| """ | |
| assert perspective is not None, "perspective matrix is required" | |
| ndc_xy = screen_coord * 2 - 1 | |
| clip_coord = np.concatenate([ndc_xy, np.ones_like(ndc_xy[..., :1])], axis=-1) | |
| transform = perspective | |
| if view is not None: | |
| transform = transform @ view | |
| if model is not None: | |
| transform = transform @ model | |
| transform = np.linalg.inv(transform) | |
| points = clip_coord @ transform.swapaxes(-1, -2) | |
| points = points[..., :3] / points[..., 3:] | |
| return points | |
| def unproject_cv( | |
| uv_coord: np.ndarray, | |
| depth: np.ndarray = None, | |
| extrinsics: np.ndarray = None, | |
| intrinsics: np.ndarray = None | |
| ) -> np.ndarray: | |
| """ | |
| Unproject uv coordinates to 3D view space following the OpenCV convention | |
| Args: | |
| uv_coord (np.ndarray): [..., N, 2] uv coordinates, value ranging in [0, 1]. | |
| The origin (0., 0.) is corresponding to the left & top | |
| depth (np.ndarray): [..., N] depth value | |
| extrinsics (np.ndarray): [..., 4, 4] extrinsics matrix | |
| intrinsics (np.ndarray): [..., 3, 3] intrinsics matrix | |
| Returns: | |
| points (np.ndarray): [..., N, 3] 3d points | |
| """ | |
| assert intrinsics is not None, "intrinsics matrix is required" | |
| points = np.concatenate([uv_coord, np.ones_like(uv_coord[..., :1])], axis=-1) | |
| points = points @ np.linalg.inv(intrinsics).swapaxes(-1, -2) | |
| if depth is not None: | |
| points = points * depth[..., None] | |
| if extrinsics is not None: | |
| points = np.concatenate([points, np.ones_like(points[..., :1])], axis=-1) | |
| points = (points @ np.linalg.inv(extrinsics).swapaxes(-1, -2))[..., :3] | |
| return points | |
| def quaternion_to_matrix(quaternion: np.ndarray, eps: float = 1e-12) -> np.ndarray: | |
| """Converts a batch of quaternions (w, x, y, z) to rotation matrices | |
| Args: | |
| quaternion (np.ndarray): shape (..., 4), the quaternions to convert | |
| Returns: | |
| np.ndarray: shape (..., 3, 3), the rotation matrices corresponding to the given quaternions | |
| """ | |
| assert quaternion.shape[-1] == 4 | |
| quaternion = quaternion / np.linalg.norm(quaternion, axis=-1, keepdims=True).clip(min=eps) | |
| w, x, y, z = quaternion[..., 0], quaternion[..., 1], quaternion[..., 2], quaternion[..., 3] | |
| zeros = np.zeros_like(w) | |
| I = np.eye(3, dtype=quaternion.dtype) | |
| xyz = quaternion[..., 1:] | |
| A = xyz[..., :, None] * xyz[..., None, :] - I * (xyz ** 2).sum(axis=-1)[..., None, None] | |
| B = np.stack([ | |
| zeros, -z, y, | |
| z, zeros, -x, | |
| -y, x, zeros | |
| ], axis=-1).reshape(*quaternion.shape[:-1], 3, 3) | |
| rot_mat = I + 2 * (A + w[..., None, None] * B) | |
| return rot_mat | |
| def matrix_to_quaternion(rot_mat: np.ndarray, eps: float = 1e-12) -> np.ndarray: | |
| """Convert 3x3 rotation matrix to quaternion (w, x, y, z) | |
| Args: | |
| rot_mat (np.ndarray): shape (..., 3, 3), the rotation matrices to convert | |
| Returns: | |
| np.ndarray: shape (..., 4), the quaternions corresponding to the given rotation matrices | |
| """ | |
| # Extract the diagonal and off-diagonal elements of the rotation matrix | |
| m00, m01, m02, m10, m11, m12, m20, m21, m22 = [rot_mat[..., i, j] for i in range(3) for j in range(3)] | |
| diag = np.diagonal(rot_mat, axis1=-2, axis2=-1) | |
| M = np.array([ | |
| [1, 1, 1], | |
| [1, -1, -1], | |
| [-1, 1, -1], | |
| [-1, -1, 1] | |
| ], dtype=rot_mat.dtype) | |
| wxyz = 0.5 * np.clip(1 + diag @ M.T, 0.0, None) ** 0.5 | |
| max_idx = np.argmax(wxyz, axis=-1) | |
| xw = np.sign(m21 - m12) | |
| yw = np.sign(m02 - m20) | |
| zw = np.sign(m10 - m01) | |
| yz = np.sign(m21 + m12) | |
| xz = np.sign(m02 + m20) | |
| xy = np.sign(m01 + m10) | |
| ones = np.ones_like(xw) | |
| sign = np.where( | |
| max_idx[..., None] == 0, | |
| np.stack([ones, xw, yw, zw], axis=-1), | |
| np.where( | |
| max_idx[..., None] == 1, | |
| np.stack([xw, ones, xy, xz], axis=-1), | |
| np.where( | |
| max_idx[..., None] == 2, | |
| np.stack([yw, xy, ones, yz], axis=-1), | |
| np.stack([zw, xz, yz, ones], axis=-1) | |
| ) | |
| ) | |
| ) | |
| quat = sign * wxyz | |
| quat = quat / np.linalg.norm(quat, axis=-1, keepdims=True).clip(min=eps) | |
| return quat | |
| def extrinsics_to_essential(extrinsics: np.ndarray): | |
| """ | |
| extrinsics matrix `[[R, t] [0, 0, 0, 1]]` such that `x' = R (x - t)` to essential matrix such that `x' E x = 0` | |
| Args: | |
| extrinsics (np.ndaray): [..., 4, 4] extrinsics matrix | |
| Returns: | |
| (np.ndaray): [..., 3, 3] essential matrix | |
| """ | |
| assert extrinsics.shape[-2:] == (4, 4) | |
| R = extrinsics[..., :3, :3] | |
| t = extrinsics[..., :3, 3] | |
| zeros = np.zeros_like(t[..., 0]) | |
| t_x = np.stack([ | |
| zeros, -t[..., 2], t[..., 1], | |
| t[..., 2], zeros, -t[..., 0], | |
| -t[..., 1], t[..., 0], zeros | |
| ]).reshape(*t.shape[:-1], 3, 3) | |
| return t_x @ R | |
| def euler_axis_angle_rotation(axis: str, angle: np.ndarray) -> np.ndarray: | |
| """ | |
| Return the rotation matrices for one of the rotations about an axis | |
| of which Euler angles describe, for each value of the angle given. | |
| Args: | |
| axis: Axis label "X" or "Y or "Z". | |
| angle: any shape tensor of Euler angles in radians | |
| Returns: | |
| Rotation matrices as tensor of shape (..., 3, 3). | |
| """ | |
| cos = np.cos(angle) | |
| sin = np.sin(angle) | |
| one = np.ones_like(angle) | |
| zero = np.zeros_like(angle) | |
| if axis == "X": | |
| R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) | |
| elif axis == "Y": | |
| R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) | |
| elif axis == "Z": | |
| R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) | |
| else: | |
| raise ValueError("letter must be either X, Y or Z.") | |
| return np.stack(R_flat, -1).reshape(angle.shape + (3, 3)) | |
| def euler_angles_to_matrix(euler_angles: np.ndarray, convention: str = 'XYZ') -> np.ndarray: | |
| """ | |
| Convert rotations given as Euler angles in radians to rotation matrices. | |
| Args: | |
| euler_angles: Euler angles in radians as ndarray of shape (..., 3), XYZ | |
| convention: permutation of "X", "Y" or "Z", representing the order of Euler rotations to apply. | |
| Returns: | |
| Rotation matrices as ndarray of shape (..., 3, 3). | |
| """ | |
| if euler_angles.shape[-1] != 3: | |
| raise ValueError("Invalid input euler angles.") | |
| if len(convention) != 3: | |
| raise ValueError("Convention must have 3 letters.") | |
| if convention[1] in (convention[0], convention[2]): | |
| raise ValueError(f"Invalid convention {convention}.") | |
| for letter in convention: | |
| if letter not in ("X", "Y", "Z"): | |
| raise ValueError(f"Invalid letter {letter} in convention string.") | |
| matrices = [ | |
| euler_axis_angle_rotation(c, euler_angles[..., 'XYZ'.index(c)]) | |
| for c in convention | |
| ] | |
| return matrices[2] @ matrices[1] @ matrices[0] | |
| def skew_symmetric(v: np.ndarray): | |
| "Skew symmetric matrix from a 3D vector" | |
| assert v.shape[-1] == 3, "v must be 3D" | |
| x, y, z = v[..., 0], v[..., 1], v[..., 2] | |
| zeros = np.zeros_like(x) | |
| return np.stack([ | |
| zeros, -z, y, | |
| z, zeros, -x, | |
| -y, x, zeros, | |
| ], axis=-1).reshape(*v.shape[:-1], 3, 3) | |
| def rotation_matrix_from_vectors(v1: np.ndarray, v2: np.ndarray): | |
| "Rotation matrix that rotates v1 to v2" | |
| I = np.eye(3, dtype=v1.dtype) | |
| v1 = v1 / np.linalg.norm(v1, axis=-1) | |
| v2 = v2 / np.linalg.norm(v2, axis=-1) | |
| v = np.cross(v1, v2, axis=-1) | |
| c = np.sum(v1 * v2, axis=-1) | |
| K = skew_symmetric(v) | |
| R = I + K + (1 / (1 + c)).astype(v1.dtype)[None, None] * (K @ K) # Avoid numpy's default type casting for scalars | |
| return R | |
| def axis_angle_to_matrix(axis_angle: np.ndarray, eps: float = 1e-12) -> np.ndarray: | |
| """Convert axis-angle representation (rotation vector) to rotation matrix, whose direction is the axis of rotation and length is the angle of rotation | |
| Args: | |
| axis_angle (np.ndarray): shape (..., 3), axis-angle vcetors | |
| Returns: | |
| np.ndarray: shape (..., 3, 3) The rotation matrices for the given axis-angle parameters | |
| """ | |
| batch_shape = axis_angle.shape[:-1] | |
| dtype = axis_angle.dtype | |
| angle = np.linalg.norm(axis_angle, axis=-1, keepdims=True) | |
| axis = axis_angle / (angle + eps) | |
| cos = np.cos(angle)[..., None, :] | |
| sin = np.sin(angle)[..., None, :] | |
| rx, ry, rz = np.split(axis, 3, axis=-1) | |
| zeros = np.zeros((*batch_shape, 1), dtype=dtype) | |
| K = np.concatenate([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], axis=-1).reshape((*batch_shape, 3, 3)) | |
| ident = np.eye(3, dtype=dtype) | |
| rot_mat = ident + sin * K + (1 - cos) * (K @ K) | |
| return rot_mat | |
| def ray_intersection(p1: np.ndarray, d1: np.ndarray, p2: np.ndarray, d2: np.ndarray): | |
| """ | |
| Compute the intersection/closest point of two D-dimensional rays | |
| If the rays are intersecting, the closest point is the intersection point. | |
| Args: | |
| p1 (np.ndarray): (..., D) origin of ray 1 | |
| d1 (np.ndarray): (..., D) direction of ray 1 | |
| p2 (np.ndarray): (..., D) origin of ray 2 | |
| d2 (np.ndarray): (..., D) direction of ray 2 | |
| Returns: | |
| (np.ndarray): (..., N) intersection point | |
| """ | |
| p1, d1, p2, d2 = np.broadcast_arrays(p1, d1, p2, d2) | |
| dtype = p1.dtype | |
| dim = p1.shape[-1] | |
| d = np.stack([d1, d2], axis=-2) # (..., 2, D) | |
| p = np.stack([p1, p2], axis=-2) # (..., 2, D) | |
| A = np.concatenate([ | |
| (np.eye(dim, dtype=dtype) * np.ones((*p.shape[:-2], 2, 1, 1))).reshape(*d.shape[:-2], 2 * dim, dim), # (..., 2 * D, D) | |
| -(np.eye(2, dtype=dtype)[..., None] * d[..., None, :]).swapaxes(-2, -1).reshape(*d.shape[:-2], 2 * dim, 2) # (..., 2 * D, 2) | |
| ], axis=-1) # (..., 2 * D, D + 2) | |
| b = p.reshape(*p.shape[:-2], 2 * dim) # (..., 2 * D) | |
| x = np.linalg.solve(A.swapaxes(-1, -2) @ A + 1e-12 * np.eye(dim + 2, dtype=dtype), (A.swapaxes(-1, -2) @ b[..., :, None])[..., 0]) | |
| return x[..., :dim], (x[..., dim], x[..., dim + 1]) | |
| def se3_matrix(R: np.ndarray, t: np.ndarray) -> np.ndarray: | |
| """ | |
| Convert rotation matrix and translation vector to 4x4 transformation matrix. | |
| Args: | |
| R (np.ndarray): [..., 3, 3] rotation matrix | |
| t (np.ndarray): [..., 3] translation vector | |
| Returns: | |
| np.ndarray: [..., 4, 4] transformation matrix | |
| """ | |
| assert R.shape[:-2] == t.shape[:-1] | |
| assert R.shape[-1] == 3 and R.shape[-2] == 3 | |
| return np.concatenate([ | |
| np.concatenate([R, t[..., None]], axis=-1), | |
| np.concatenate([np.zeros_like(t), np.ones_like(t[..., :1])], axis=-1)[..., None, :] | |
| ], axis=-2) | |
| def slerp_quaternion(q1: np.ndarray, q2: np.ndarray, t: np.ndarray) -> np.ndarray: | |
| """ | |
| Spherical linear interpolation between two unit quaternions. | |
| Args: | |
| q1 (np.ndarray): [..., d] unit vector 1 | |
| q2 (np.ndarray): [..., d] unit vector 2 | |
| t (np.ndarray): [...] interpolation parameter in [0, 1] | |
| Returns: | |
| np.ndarray: [..., 3] interpolated unit vector | |
| """ | |
| q1 = q1 / np.linalg.norm(q1, axis=-1, keepdims=True) | |
| q2 = q2 / np.linalg.norm(q2, axis=-1, keepdims=True) | |
| dot = np.sum(q1 * q2, axis=-1, keepdims=True) | |
| dot = np.where(dot < 0, -dot, dot) # handle negative dot product | |
| dot = np.minimum(dot, 1.) | |
| theta = np.arccos(dot) * t | |
| q_ortho = q2 - q1 * dot | |
| q_ortho = q_ortho / np.maximum(np.linalg.norm(q_ortho, axis=-1, keepdims=True), 1e-12) | |
| q = q1 * np.cos(theta) + q_ortho * np.sin(theta) | |
| return q | |
| def slerp_rotation_matrix(R1: np.ndarray, R2: np.ndarray, t: np.ndarray) -> np.ndarray: | |
| """ | |
| Spherical linear interpolation between two rotation matrices. | |
| Args: | |
| R1 (np.ndarray): [..., 3, 3] rotation matrix 1 | |
| R2 (np.ndarray): [..., 3, 3] rotation matrix 2 | |
| t (np.ndarray): [...] interpolation parameter in [0, 1] | |
| Returns: | |
| np.ndarray: [..., 3, 3] interpolated rotation matrix | |
| """ | |
| quat1 = matrix_to_quaternion(R1) | |
| quat2 = matrix_to_quaternion(R2) | |
| quat = slerp_quaternion(quat1, quat2, t) | |
| return quaternion_to_matrix(quat) | |
| def slerp_vector(v1: np.ndarray, v2: np.ndarray, t: np.ndarray) -> np.ndarray: | |
| """ | |
| Spherical linear interpolation between two unit vectors. The vectors are assumed to be normalized. | |
| Args: | |
| v1 (np.ndarray): [..., d] unit vector 1 | |
| v2 (np.ndarray): [..., d] unit vector 2 | |
| t (np.ndarray): [...] interpolation parameter in [0, 1] | |
| Returns: | |
| np.ndarray: [..., d] interpolated unit vector | |
| """ | |
| dot = np.sum(v1 * v2, axis=-1, keepdims=True) | |
| dot = np.minimum(dot, 1.) | |
| theta = np.arccos(dot) * t | |
| v_ortho = v2 - v1 * dot | |
| v_ortho = v_ortho / np.maximum(np.linalg.norm(v_ortho, axis=-1, keepdims=True), 1e-12) | |
| v = v1 * np.cos(theta) + v_ortho * np.sin(theta) | |
| return v | |
| def lerp(x1: np.ndarray, x2: np.ndarray, t: np.ndarray) -> np.ndarray: | |
| """ | |
| Linear interpolation between two vectors. | |
| Args: | |
| x1 (np.ndarray): [..., d] vector 1 | |
| x2 (np.ndarray): [..., d] vector 2 | |
| t (np.ndarray): [...] interpolation parameter. [0, 1] for interpolation between x1 and x2, otherwise for extrapolation. | |
| Returns: | |
| np.ndarray: [..., d] interpolated vector | |
| """ | |
| return x1 + np.asarray(t)[..., None] * (x2 - x1) | |
| def lerp_se3_matrix(T1: np.ndarray, T2: np.ndarray, t: np.ndarray) -> np.ndarray: | |
| """ | |
| Linear interpolation between two SE(3) matrices. | |
| Args: | |
| T1 (np.ndarray): [..., 4, 4] SE(3) matrix 1 | |
| T2 (np.ndarray): [..., 4, 4] SE(3) matrix 2 | |
| t (np.ndarray): [...] interpolation parameter in [0, 1] | |
| Returns: | |
| np.ndarray: [..., 4, 4] interpolated SE(3) matrix | |
| """ | |
| R1 = T1[..., :3, :3] | |
| R2 = T2[..., :3, :3] | |
| trans1 = T1[..., :3, 3] | |
| trans2 = T2[..., :3, 3] | |
| R = slerp_rotation_matrix(R1, R2, t) | |
| trans = lerp(trans1, trans2, t) | |
| return se3_matrix(R, trans) | |
| def piecewise_lerp(x: np.ndarray, t: np.ndarray, s: np.ndarray, extrapolation_mode: Literal['constant', 'linear'] = 'constant') -> np.ndarray: | |
| """ | |
| Linear spline interpolation. | |
| ### Parameters: | |
| - `x`: np.ndarray, shape (n, d): the values of data points. | |
| - `t`: np.ndarray, shape (n,): the times of the data points. | |
| - `s`: np.ndarray, shape (m,): the times to be interpolated. | |
| - `extrapolation_mode`: str, the mode of extrapolation. 'constant' means extrapolate the boundary values, 'linear' means extrapolate linearly. | |
| ### Returns: | |
| - `y`: np.ndarray, shape (..., m, d): the interpolated values. | |
| """ | |
| i = np.searchsorted(t, s, side='left') | |
| if extrapolation_mode == 'constant': | |
| prev = np.clip(i - 1, 0, len(t) - 1) | |
| suc = np.clip(i, 0, len(t) - 1) | |
| elif extrapolation_mode == 'linear': | |
| prev = np.clip(i - 1, 0, len(t) - 2) | |
| suc = np.clip(i, 1, len(t) - 1) | |
| else: | |
| raise ValueError(f'Invalid extrapolation_mode: {extrapolation_mode}') | |
| u = (s - t[prev]) / np.maximum(t[suc] - t[prev], 1e-12) | |
| y = lerp(x[prev], x[suc], u) | |
| return y | |
| def piecewise_lerp_se3_matrix(T: np.ndarray, t: np.ndarray, s: np.ndarray, extrapolation_mode: Literal['constant', 'linear'] = 'constant') -> np.ndarray: | |
| """ | |
| Linear spline interpolation for SE(3) matrices. | |
| ### Parameters: | |
| - `T`: np.ndarray, shape (n, 4, 4): the SE(3) matrices. | |
| - `t`: np.ndarray, shape (n,): the times of the data points. | |
| - `s`: np.ndarray, shape (m,): the times to be interpolated. | |
| - `extrapolation_mode`: str, the mode of extrapolation. 'constant' means extrapolate the boundary values, 'linear' means extrapolate linearly. | |
| ### Returns: | |
| - `T_interp`: np.ndarray, shape (..., m, 4, 4): the interpolated SE(3) matrices. | |
| """ | |
| i = np.searchsorted(t, s, side='left') | |
| if extrapolation_mode == 'constant': | |
| prev = np.clip(i - 1, 0, len(t) - 1) | |
| suc = np.clip(i, 0, len(t) - 1) | |
| elif extrapolation_mode == 'linear': | |
| prev = np.clip(i - 1, 0, len(t) - 2) | |
| suc = np.clip(i, 1, len(t) - 1) | |
| else: | |
| raise ValueError(f'Invalid extrapolation_mode: {extrapolation_mode}') | |
| u = (s - t[prev]) / np.maximum(t[suc] - t[prev], 1e-12) | |
| T = lerp_se3_matrix(T[prev], T[suc], u) | |
| return T | |
| def apply_transform(T: np.ndarray, x: np.ndarray) -> np.ndarray: | |
| """ | |
| Apply SE(3) transformation to a point or a set of points. | |
| ### Parameters: | |
| - `T`: np.ndarray, shape (..., 4, 4): the SE(3) matrix. | |
| - `x`: np.ndarray, shape (..., 3): the point or a set of points to be transformed. | |
| ### Returns: | |
| - `x_transformed`: np.ndarray, shape (..., 3): the transformed point or a set of points. | |
| """ | |
| x = np.asarray(x) | |
| assert x.shape[-1] == 3 | |
| T = np.asarray(T) | |
| assert T.shape[-2:] == (4, 4) | |
| x_transformed = (T[..., :3, :3] @ x[..., :, None]) + T[..., :3, 3][..., None] | |
| return x_transformed[..., 0] |