Spaces:
Running
on
Zero
Running
on
Zero
| import numpy as np | |
| import scipy as sp | |
| import scipy.optimize as spopt | |
| from typing import * | |
| __all__ = [ | |
| 'calc_quad_candidates', | |
| 'calc_quad_distortion', | |
| 'calc_quad_direction', | |
| 'calc_quad_smoothness', | |
| 'sovle_quad', | |
| 'sovle_quad_qp', | |
| 'tri_to_quad' | |
| ] | |
| def calc_quad_candidates( | |
| edges: np.ndarray, | |
| face2edge: np.ndarray, | |
| edge2face: np.ndarray, | |
| ): | |
| """ | |
| Calculate the candidate quad faces. | |
| Args: | |
| edges (np.ndarray): [E, 2] edge indices | |
| face2edge (np.ndarray): [T, 3] face to edge relation | |
| edge2face (np.ndarray): [E, 2] edge to face relation | |
| Returns: | |
| quads (np.ndarray): [Q, 4] quad candidate indices | |
| quad2edge (np.ndarray): [Q, 4] edge to quad candidate relation | |
| quad2adj (np.ndarray): [Q, 8] adjacent quad candidates of each quad candidate | |
| quads_valid (np.ndarray): [E] whether the quad corresponding to the edge is valid | |
| """ | |
| E = edges.shape[0] | |
| T = face2edge.shape[0] | |
| quads_valid = edge2face[:, 1] != -1 | |
| Q = quads_valid.sum() | |
| quad2face = edge2face[quads_valid] # [Q, 2] | |
| quad2edge = face2edge[quad2face] # [Q, 2, 3] | |
| flag = quad2edge == np.arange(E)[quads_valid][:, None, None] # [Q, 2, 3] | |
| flag = flag.argmax(axis=-1) # [Q, 2] | |
| quad2edge = np.stack([ | |
| quad2edge[np.arange(Q)[:, None], np.arange(2)[None, :], (flag + 1) % 3], | |
| quad2edge[np.arange(Q)[:, None], np.arange(2)[None, :], (flag + 2) % 3], | |
| ], axis=-1).reshape(Q, 4) # [Q, 4] | |
| quads = np.concatenate([ | |
| np.where( | |
| (edges[quad2edge[:, 0:1], 1:] == edges[quad2edge[:, 1:2], :]).any(axis=-1), | |
| edges[quad2edge[:, 0:1], [[0, 1]]], | |
| edges[quad2edge[:, 0:1], [[1, 0]]], | |
| ), | |
| np.where( | |
| (edges[quad2edge[:, 2:3], 1:] == edges[quad2edge[:, 3:4], :]).any(axis=-1), | |
| edges[quad2edge[:, 2:3], [[0, 1]]], | |
| edges[quad2edge[:, 2:3], [[1, 0]]], | |
| ), | |
| ], axis=1) # [Q, 4] | |
| quad2adj = edge2face[quad2edge] # [Q, 4, 2] | |
| quad2adj = quad2adj[quad2adj != quad2face[:, [0,0,1,1], None]].reshape(Q, 4) # [Q, 4] | |
| quad2adj_valid = quad2adj != -1 | |
| quad2adj = face2edge[quad2adj] # [Q, 4, 3] | |
| quad2adj[~quad2adj_valid, 0] = quad2edge[~quad2adj_valid] | |
| quad2adj[~quad2adj_valid, 1:] = -1 | |
| quad2adj = quad2adj[quad2adj != quad2edge[..., None]].reshape(Q, 8) # [Q, 8] | |
| edge_valid = -np.ones(E, dtype=np.int32) | |
| edge_valid[quads_valid] = np.arange(Q) | |
| quad2adj_valid = quad2adj != -1 | |
| quad2adj[quad2adj_valid] = edge_valid[quad2adj[quad2adj_valid]] # [Q, 8] | |
| return quads, quad2edge, quad2adj, quads_valid | |
| def calc_quad_distortion( | |
| vertices: np.ndarray, | |
| quads: np.ndarray, | |
| ): | |
| """ | |
| Calculate the distortion of each candidate quad face. | |
| Args: | |
| vertices (np.ndarray): [N, 3] 3-dimensional vertices | |
| quads (np.ndarray): [Q, 4] quad face indices | |
| Returns: | |
| distortion (np.ndarray): [Q] distortion of each quad face | |
| """ | |
| edge0 = vertices[quads[:, 1]] - vertices[quads[:, 0]] # [Q, 3] | |
| edge1 = vertices[quads[:, 2]] - vertices[quads[:, 1]] # [Q, 3] | |
| edge2 = vertices[quads[:, 3]] - vertices[quads[:, 2]] # [Q, 3] | |
| edge3 = vertices[quads[:, 0]] - vertices[quads[:, 3]] # [Q, 3] | |
| cross = vertices[quads[:, 0]] - vertices[quads[:, 2]] # [Q, 3] | |
| len0 = np.maximum(np.linalg.norm(edge0, axis=-1), 1e-10) # [Q] | |
| len1 = np.maximum(np.linalg.norm(edge1, axis=-1), 1e-10) # [Q] | |
| len2 = np.maximum(np.linalg.norm(edge2, axis=-1), 1e-10) # [Q] | |
| len3 = np.maximum(np.linalg.norm(edge3, axis=-1), 1e-10) # [Q] | |
| len_cross = np.maximum(np.linalg.norm(cross, axis=-1), 1e-10) # [Q] | |
| angle0 = np.arccos(np.clip(np.sum(-edge0 * edge1, axis=-1) / (len0 * len1), -1, 1)) # [Q] | |
| angle1 = np.arccos(np.clip(np.sum(-edge1 * cross, axis=-1) / (len1 * len_cross), -1, 1)) \ | |
| + np.arccos(np.clip(np.sum(cross * edge2, axis=-1) / (len_cross * len2), -1, 1)) # [Q] | |
| angle2 = np.arccos(np.clip(np.sum(-edge2 * edge3, axis=-1) / (len2 * len3), -1, 1)) # [Q] | |
| angle3 = np.arccos(np.clip(np.sum(-edge3 * -cross, axis=-1) / (len3 * len_cross), -1, 1)) \ | |
| + np.arccos(np.clip(np.sum(-cross * edge0, axis=-1) / (len_cross * len0), -1, 1)) # [Q] | |
| normal0 = np.cross(edge0, edge1) # [Q, 3] | |
| normal1 = np.cross(edge2, edge3) # [Q, 3] | |
| normal0 = normal0 / np.maximum(np.linalg.norm(normal0, axis=-1, keepdims=True), 1e-10) # [Q, 3] | |
| normal1 = normal1 / np.maximum(np.linalg.norm(normal1, axis=-1, keepdims=True), 1e-10) # [Q, 3] | |
| angle_normal = np.arccos(np.clip(np.sum(normal0 * normal1, axis=-1), -1, 1)) # [Q] | |
| D90 = np.pi / 2 | |
| D180 = np.pi | |
| D360 = np.pi * 2 | |
| ang_eng = (np.abs(angle0 - D90)**2 + np.abs(angle1 - D90)**2 + np.abs(angle2 - D90)**2 + np.abs(angle3 - D90)**2) / 4 # [Q] | |
| dist_eng = np.abs(angle0 - angle2)**2 / np.minimum(np.maximum(np.minimum(angle0, angle2), 1e-10), np.maximum(D180 - np.maximum(angle0, angle2), 1e-10)) \ | |
| + np.abs(angle1 - angle3)**2 / np.minimum(np.maximum(np.minimum(angle1, angle3), 1e-10), np.maximum(D180 - np.maximum(angle1, angle3), 1e-10)) # [Q] | |
| plane_eng = np.where(angle_normal < D90/2, np.abs(angle_normal)**2, 1e10) # [Q] | |
| eng = ang_eng + 2 * dist_eng + 2 * plane_eng # [Q] | |
| return eng | |
| def calc_quad_direction( | |
| vertices: np.ndarray, | |
| quads: np.ndarray, | |
| ): | |
| """ | |
| Calculate the direction of each candidate quad face. | |
| Args: | |
| vertices (np.ndarray): [N, 3] 3-dimensional vertices | |
| quads (np.ndarray): [Q, 4] quad face indices | |
| Returns: | |
| direction (np.ndarray): [Q, 4] direction of each quad face. | |
| Represented by the angle between the crossing and each edge. | |
| """ | |
| mid0 = (vertices[quads[:, 0]] + vertices[quads[:, 1]]) / 2 # [Q, 3] | |
| mid1 = (vertices[quads[:, 1]] + vertices[quads[:, 2]]) / 2 # [Q, 3] | |
| mid2 = (vertices[quads[:, 2]] + vertices[quads[:, 3]]) / 2 # [Q, 3] | |
| mid3 = (vertices[quads[:, 3]] + vertices[quads[:, 0]]) / 2 # [Q, 3] | |
| cross0 = mid2 - mid0 # [Q, 3] | |
| cross1 = mid3 - mid1 # [Q, 3] | |
| cross0 = cross0 / np.maximum(np.linalg.norm(cross0, axis=-1, keepdims=True), 1e-10) # [Q, 3] | |
| cross1 = cross1 / np.maximum(np.linalg.norm(cross1, axis=-1, keepdims=True), 1e-10) # [Q, 3] | |
| edge0 = vertices[quads[:, 1]] - vertices[quads[:, 0]] # [Q, 3] | |
| edge1 = vertices[quads[:, 2]] - vertices[quads[:, 1]] # [Q, 3] | |
| edge2 = vertices[quads[:, 3]] - vertices[quads[:, 2]] # [Q, 3] | |
| edge3 = vertices[quads[:, 0]] - vertices[quads[:, 3]] # [Q, 3] | |
| edge0 = edge0 / np.maximum(np.linalg.norm(edge0, axis=-1, keepdims=True), 1e-10) # [Q, 3] | |
| edge1 = edge1 / np.maximum(np.linalg.norm(edge1, axis=-1, keepdims=True), 1e-10) # [Q, 3] | |
| edge2 = edge2 / np.maximum(np.linalg.norm(edge2, axis=-1, keepdims=True), 1e-10) # [Q, 3] | |
| edge3 = edge3 / np.maximum(np.linalg.norm(edge3, axis=-1, keepdims=True), 1e-10) # [Q, 3] | |
| direction = np.stack([ | |
| np.arccos(np.clip(np.sum(cross0 * edge0, axis=-1), -1, 1)), | |
| np.arccos(np.clip(np.sum(cross1 * edge1, axis=-1), -1, 1)), | |
| np.arccos(np.clip(np.sum(-cross0 * edge2, axis=-1), -1, 1)), | |
| np.arccos(np.clip(np.sum(-cross1 * edge3, axis=-1), -1, 1)), | |
| ], axis=-1) # [Q, 4] | |
| return direction | |
| def calc_quad_smoothness( | |
| quad2edge: np.ndarray, | |
| quad2adj: np.ndarray, | |
| quads_direction: np.ndarray, | |
| ): | |
| """ | |
| Calculate the smoothness of each candidate quad face connection. | |
| Args: | |
| quad2adj (np.ndarray): [Q, 8] adjacent quad faces of each quad face | |
| quads_direction (np.ndarray): [Q, 4] direction of each quad face | |
| Returns: | |
| smoothness (np.ndarray): [Q, 8] smoothness of each quad face connection | |
| """ | |
| Q = quad2adj.shape[0] | |
| quad2adj_valid = quad2adj != -1 | |
| connections = np.stack([ | |
| np.arange(Q)[:, None].repeat(8, axis=1), | |
| quad2adj, | |
| ], axis=-1)[quad2adj_valid] # [C, 2] | |
| shared_edge_idx_0 = np.array([[0, 0, 1, 1, 2, 2, 3, 3]]).repeat(Q, axis=0)[quad2adj_valid] # [C] | |
| shared_edge_idx_1 = np.argmax(quad2edge[quad2adj][quad2adj_valid] == quad2edge[connections[:, 0], shared_edge_idx_0][:, None], axis=-1) # [C] | |
| valid_smoothness = np.abs(quads_direction[connections[:, 0], shared_edge_idx_0] - quads_direction[connections[:, 1], shared_edge_idx_1])**2 # [C] | |
| smoothness = np.zeros([Q, 8], dtype=np.float32) | |
| smoothness[quad2adj_valid] = valid_smoothness | |
| return smoothness | |
| def sovle_quad( | |
| face2edge: np.ndarray, | |
| edge2face: np.ndarray, | |
| quad2adj: np.ndarray, | |
| quads_distortion: np.ndarray, | |
| quads_smoothness: np.ndarray, | |
| quads_valid: np.ndarray, | |
| ): | |
| """ | |
| Solve the quad mesh from the candidate quad faces. | |
| Args: | |
| face2edge (np.ndarray): [T, 3] face to edge relation | |
| edge2face (np.ndarray): [E, 2] edge to face relation | |
| quad2adj (np.ndarray): [Q, 8] adjacent quad faces of each quad face | |
| quads_distortion (np.ndarray): [Q] distortion of each quad face | |
| quads_smoothness (np.ndarray): [Q, 8] smoothness of each quad face connection | |
| quads_valid (np.ndarray): [E] whether the quad corresponding to the edge is valid | |
| Returns: | |
| weights (np.ndarray): [Q] weight of each valid quad face | |
| """ | |
| T = face2edge.shape[0] | |
| E = edge2face.shape[0] | |
| Q = quads_distortion.shape[0] | |
| edge_valid = -np.ones(E, dtype=np.int32) | |
| edge_valid[quads_valid] = np.arange(Q) | |
| quads_connection = np.stack([ | |
| np.arange(Q)[:, None].repeat(8, axis=1), | |
| quad2adj, | |
| ], axis=-1)[quad2adj != -1] # [C, 2] | |
| quads_connection = np.sort(quads_connection, axis=-1) # [C, 2] | |
| quads_connection, quads_connection_idx = np.unique(quads_connection, axis=0, return_index=True) # [C, 2], [C] | |
| quads_smoothness = quads_smoothness[quad2adj != -1] # [C] | |
| quads_smoothness = quads_smoothness[quads_connection_idx] # [C] | |
| C = quads_connection.shape[0] | |
| # Construct the linear programming problem | |
| # Variables: | |
| # quads_weight: [Q] weight of each quad face | |
| # tri_min_weight: [T] minimum weight of each triangle face | |
| # conn_min_weight: [C] minimum weight of each quad face connection | |
| # conn_max_weight: [C] maximum weight of each quad face connection | |
| # Objective: | |
| # mimi | |
| c = np.concatenate([ | |
| quads_distortion - 3, | |
| quads_smoothness*4 - 2, | |
| quads_smoothness*4, | |
| ], axis=0) # [Q+C] | |
| A_ub_triplet = np.concatenate([ | |
| np.stack([np.arange(T), edge_valid[face2edge[:, 0]], np.ones(T)], axis=1), # [T, 3] | |
| np.stack([np.arange(T), edge_valid[face2edge[:, 1]], np.ones(T)], axis=1), # [T, 3] | |
| np.stack([np.arange(T), edge_valid[face2edge[:, 2]], np.ones(T)], axis=1), # [T, 3] | |
| np.stack([np.arange(T, T+C), np.arange(Q, Q+C), np.ones(C)], axis=1), # [C, 3] | |
| np.stack([np.arange(T, T+C), quads_connection[:, 0], -np.ones(C)], axis=1), # [C, 3] | |
| np.stack([np.arange(T, T+C), quads_connection[:, 1], -np.ones(C)], axis=1), # [C, 3] | |
| np.stack([np.arange(T+C, T+2*C), np.arange(Q+C, Q+2*C), -np.ones(C)], axis=1), # [C, 3] | |
| np.stack([np.arange(T+C, T+2*C), quads_connection[:, 0], np.ones(C)], axis=1), # [C, 3] | |
| np.stack([np.arange(T+C, T+2*C), quads_connection[:, 1], np.ones(C)], axis=1), # [C, 3] | |
| ], axis=0) # [3T+6C, 3] | |
| A_ub_triplet = A_ub_triplet[A_ub_triplet[:, 1] != -1] # [3T', 3] | |
| A_ub = sp.sparse.coo_matrix((A_ub_triplet[:, 2], (A_ub_triplet[:, 0], A_ub_triplet[:, 1])), shape=[T+2*C, Q+2*C]) # [T, | |
| b_ub = np.concatenate([np.ones(T), -np.ones(C), np.ones(C)], axis=0) # [T+2C] | |
| bound = np.stack([ | |
| np.concatenate([np.zeros(Q), -np.ones(C), np.zeros(C)], axis=0), | |
| np.concatenate([np.ones(Q), np.ones(C), np.ones(C)], axis=0), | |
| ], axis=1) # [Q+2C, 2] | |
| A_eq = None | |
| b_eq = None | |
| print('Solver statistics:') | |
| print(f' #T = {T}') | |
| print(f' #Q = {Q}') | |
| print(f' #C = {C}') | |
| # Solve the linear programming problem | |
| last_num_valid = 0 | |
| for i in range(100): | |
| res_ = spopt.linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bound) | |
| if not res_.success: | |
| print(f' Iter {i} | Failed with {res_.message}') | |
| break | |
| res = res_ | |
| weights = res.x[:Q] | |
| valid = (weights > 0.5) | |
| num_valid = valid.sum() | |
| print(f' Iter {i} | #Q_valid = {num_valid}') | |
| if num_valid == last_num_valid: | |
| break | |
| last_num_valid = num_valid | |
| A_eq_triplet = np.stack([ | |
| np.arange(num_valid), | |
| np.arange(Q)[valid], | |
| np.ones(num_valid), | |
| ], axis=1) # [num_valid, 3] | |
| A_eq = sp.sparse.coo_matrix((A_eq_triplet[:, 2], (A_eq_triplet[:, 0], A_eq_triplet[:, 1])), shape=[num_valid, Q+2*C]) # [num_valid, Q+C] | |
| b_eq = np.where(weights[valid] > 0.5, 1, 0) # [num_valid] | |
| # Return the result | |
| quads_weight = res.x[:Q] | |
| conn_min_weight = res.x[Q:Q+C] | |
| conn_max_weight = res.x[Q+C:Q+2*C] | |
| return quads_weight, conn_min_weight, conn_max_weight | |
| def sovle_quad_qp( | |
| face2edge: np.ndarray, | |
| edge2face: np.ndarray, | |
| quad2adj: np.ndarray, | |
| quads_distortion: np.ndarray, | |
| quads_smoothness: np.ndarray, | |
| quads_valid: np.ndarray, | |
| ): | |
| """ | |
| Solve the quad mesh from the candidate quad faces. | |
| Args: | |
| face2edge (np.ndarray): [T, 3] face to edge relation | |
| edge2face (np.ndarray): [E, 2] edge to face relation | |
| quad2adj (np.ndarray): [Q, 8] adjacent quad faces of each quad face | |
| quads_distortion (np.ndarray): [Q] distortion of each quad face | |
| quads_smoothness (np.ndarray): [Q, 8] smoothness of each quad face connection | |
| quads_valid (np.ndarray): [E] whether the quad corresponding to the edge is valid | |
| Returns: | |
| weights (np.ndarray): [Q] weight of each valid quad face | |
| """ | |
| T = face2edge.shape[0] | |
| E = edge2face.shape[0] | |
| Q = quads_distortion.shape[0] | |
| edge_valid = -np.ones(E, dtype=np.int32) | |
| edge_valid[quads_valid] = np.arange(Q) | |
| # Construct the quadratic programming problem | |
| C_smoothness_triplet = np.stack([ | |
| np.arange(Q)[:, None].repeat(8, axis=1)[quad2adj != -1], | |
| quad2adj[quad2adj != -1], | |
| 5 * quads_smoothness[quad2adj != -1], | |
| ], axis=-1) # [C, 3] | |
| # C_smoothness_triplet = np.concatenate([ | |
| # C_smoothness_triplet, | |
| # np.stack([np.arange(Q), np.arange(Q), 20*np.ones(Q)], axis=1), | |
| # ], axis=0) # [C+Q, 3] | |
| C_smoothness = sp.sparse.coo_matrix((C_smoothness_triplet[:, 2], (C_smoothness_triplet[:, 0], C_smoothness_triplet[:, 1])), shape=[Q, Q]) # [Q, Q] | |
| C_smoothness = C_smoothness.tocsc() | |
| C_dist = quads_distortion - 20 # [Q] | |
| A_eq = sp.sparse.coo_matrix((np.zeros(Q), (np.zeros(Q), np.arange(Q))), shape=[1, Q]) # [1, Q]\ | |
| A_eq = A_eq.tocsc() | |
| b_eq = np.array([0]) | |
| A_ub_triplet = np.concatenate([ | |
| np.stack([np.arange(T), edge_valid[face2edge[:, 0]], np.ones(T)], axis=1), # [T, 3] | |
| np.stack([np.arange(T), edge_valid[face2edge[:, 1]], np.ones(T)], axis=1), # [T, 3] | |
| np.stack([np.arange(T), edge_valid[face2edge[:, 2]], np.ones(T)], axis=1), # [T, 3] | |
| ], axis=0) # [3T, 3] | |
| A_ub_triplet = A_ub_triplet[A_ub_triplet[:, 1] != -1] # [3T', 3] | |
| A_ub = sp.sparse.coo_matrix((A_ub_triplet[:, 2], (A_ub_triplet[:, 0], A_ub_triplet[:, 1])), shape=[T, Q]) # [T, Q] | |
| A_ub = A_ub.tocsc() | |
| b_ub = np.ones(T) | |
| lb = np.zeros(Q) | |
| ub = np.ones(Q) | |
| import piqp | |
| solver = piqp.SparseSolver() | |
| solver.settings.verbose = True | |
| solver.settings.compute_timings = True | |
| solver.setup(C_smoothness, C_dist, A_eq, b_eq, A_ub, b_ub, lb, ub) | |
| status = solver.solve() | |
| # x = cp.Variable(Q) | |
| # prob = cp.Problem( | |
| # cp.Minimize(cp.quad_form(x, C_smoothness) + C_dist.T @ x), | |
| # [ | |
| # A_ub @ x <= b_ub, | |
| # x >= 0, x <= 1, | |
| # ] | |
| # ) | |
| # # Solve the quadratic programming problem | |
| # prob.solve(solver=cp.PIQP, verbose=True) | |
| # Return the result | |
| weights = solver.result.x | |
| return weights | |
| def tri_to_quad( | |
| vertices: np.ndarray, | |
| faces: np.ndarray, | |
| ) -> Tuple[np.ndarray, np.ndarray]: | |
| """ | |
| Convert a triangle mesh to a quad mesh. | |
| NOTE: The input mesh must be a manifold mesh. | |
| Args: | |
| vertices (np.ndarray): [N, 3] 3-dimensional vertices | |
| faces (np.ndarray): [T, 3] triangular face indices | |
| Returns: | |
| vertices (np.ndarray): [N_, 3] 3-dimensional vertices | |
| faces (np.ndarray): [Q, 4] quad face indices | |
| """ | |
| raise NotImplementedError | |
| if __name__ == '__main__': | |
| import os | |
| import sys | |
| sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', '..'))) | |
| import utils3d | |
| import numpy as np | |
| import cv2 | |
| from vis import vis_edge_color | |
| file = 'miku' | |
| vertices, faces = utils3d.io.read_ply(f'test/assets/{file}.ply') | |
| edges, edge2face, face2edge, face2face = calc_relations(faces) | |
| quad_cands, quad2edge, quad2adj, quad_valid = calc_quad_candidates(edges, face2edge, edge2face) | |
| distortion = calc_quad_distortion(vertices, quad_cands) | |
| direction = calc_quad_direction(vertices, quad_cands) | |
| smoothness = calc_quad_smoothness(quad2edge, quad2adj, direction) | |
| boundary_edges = edges[edge2face[:, 1] == -1] | |
| quads_weight, conn_min_weight, conn_max_weight = sovle_quad(face2edge, edge2face, quad2adj, distortion, smoothness, quad_valid) | |
| quads = quad_cands[quads_weight > 0.5] | |
| print('Mesh statistics') | |
| print(f' #V = {vertices.shape[0]}') | |
| print(f' #F = {faces.shape[0]}') | |
| print(f' #E = {edges.shape[0]}') | |
| print(f' #B = {boundary_edges.shape[0]}') | |
| print(f' #Q_cand = {quad_cands.shape[0]}') | |
| print(f' #Q = {quads.shape[0]}') | |
| utils3d.io.write_ply(f'test/assets/{file}_boundary_edges.ply', vertices=vertices, edges=boundary_edges) | |
| utils3d.io.write_ply(f'test/assets/{file}_quad_candidates.ply', vertices=vertices, faces=quads) | |
| edge_colors = np.zeros([edges.shape[0], 3], dtype=np.uint8) | |
| distortion = (distortion - distortion.min()) / (distortion.max() - distortion.min()) | |
| distortion = (distortion * 255).astype(np.uint8) | |
| edge_colors[quad_valid] = cv2.cvtColor(cv2.applyColorMap(distortion, cv2.COLORMAP_JET), cv2.COLOR_BGR2RGB).reshape(-1, 3) | |
| utils3d.io.write_ply(f'test/assets/{file}_quad_candidates_distortion.ply', **vis_edge_color(vertices, edges, edge_colors)) | |
| edge_colors = np.zeros([edges.shape[0], 3], dtype=np.uint8) | |
| edge_colors[quad_valid] = cv2.cvtColor(cv2.applyColorMap((quads_weight * 255).astype(np.uint8), cv2.COLORMAP_JET), cv2.COLOR_BGR2RGB).reshape(-1, 3) | |
| utils3d.io.write_ply(f'test/assets/{file}_quad_candidates_weights.ply', **vis_edge_color(vertices, edges, edge_colors)) | |
| utils3d.io.write_ply(f'test/assets/{file}_quad.ply', vertices=vertices, faces=quads) | |
| quad_centers = vertices[quad_cands].mean(axis=1) | |
| conns = np.stack([ | |
| np.arange(quad_cands.shape[0])[:, None].repeat(8, axis=1), | |
| quad2adj, | |
| ], axis=-1)[quad2adj != -1] # [C, 2] | |
| conns, conns_idx = np.unique(np.sort(conns, axis=-1), axis=0, return_index=True) # [C, 2], [C] | |
| smoothness = smoothness[quad2adj != -1][conns_idx] # [C] | |
| conns_color = cv2.cvtColor(cv2.applyColorMap((smoothness * 255).astype(np.uint8), cv2.COLORMAP_JET), cv2.COLOR_BGR2RGB).reshape(-1, 3) | |
| utils3d.io.write_ply(f'test/assets/{file}_quad_conn_smoothness.ply', **vis_edge_color(quad_centers, conns, conns_color)) | |
| conns_color = cv2.cvtColor(cv2.applyColorMap((conn_min_weight * 255).astype(np.uint8), cv2.COLORMAP_JET), cv2.COLOR_BGR2RGB).reshape(-1, 3) | |
| utils3d.io.write_ply(f'test/assets/{file}_quad_conn_min.ply', **vis_edge_color(quad_centers, conns, conns_color)) | |
| conns_color = cv2.cvtColor(cv2.applyColorMap((conn_max_weight * 255).astype(np.uint8), cv2.COLORMAP_JET), cv2.COLOR_BGR2RGB).reshape(-1, 3) | |
| utils3d.io.write_ply(f'test/assets/{file}_quad_conn_max.ply', **vis_edge_color(quad_centers, conns, conns_color)) | |