import gradio as gr import numpy as np from transformers import AutoImageProcessor, AutoModel from transformers.image_utils import to_numpy_array import torch import plotly.graph_objects as go from PIL import Image import spaces @spaces.GPU def process_images(image1, image2): """ Process two images and return a plot of the matching keypoints. """ if image1 is None or image2 is None: return None images = [image1, image2] processor = AutoImageProcessor.from_pretrained("ETH-CVG/lightglue_superpoint") model = AutoModel.from_pretrained("ETH-CVG/lightglue_superpoint") inputs = processor(images, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) image_sizes = [[(image.height, image.width) for image in images]] outputs = processor.post_process_keypoint_matching( outputs, image_sizes, threshold=0.2 ) output = outputs[0] image1 = to_numpy_array(image1) image2 = to_numpy_array(image2) height0, width0 = image1.shape[:2] height1, width1 = image2.shape[:2] # Create PIL image from numpy array pil_img = Image.fromarray((image1 / 255.0 * 255).astype(np.uint8)) pil_img2 = Image.fromarray((image2 / 255.0 * 255).astype(np.uint8)) # Create Plotly figure fig = go.Figure() # Get keypoints keypoints0_x, keypoints0_y = output["keypoints0"].unbind(1) keypoints1_x, keypoints1_y = output["keypoints1"].unbind(1) # Add a separate trace for each match (line + markers) to enable highlighting for keypoint0_x, keypoint0_y, keypoint1_x, keypoint1_y, matching_score in zip( keypoints0_x, keypoints0_y, keypoints1_x, keypoints1_y, output["matching_scores"], ): color_val = matching_score.item() color = f"rgba({int(255 * (1 - color_val))}, {int(255 * color_val)}, 0, 0.7)" hover_text = ( f"Score: {matching_score.item():.2f}
" f"Point 1: ({keypoint0_x.item():.1f}, {keypoint0_y.item():.1f})
" f"Point 2: ({keypoint1_x.item():.1f}, {keypoint1_y.item():.1f})" ) fig.add_trace( go.Scatter( x=[keypoint0_x.item(), keypoint1_x.item() + width0], y=[keypoint0_y.item(), keypoint1_y.item()], mode="lines+markers", line=dict(color=color, width=2), marker=dict(color=color, size=5, opacity=0.8), hoverinfo="text", hovertext=hover_text, showlegend=False, ) ) # Update layout to use images as background fig.update_layout( title="LightGlue Keypoint Matching", xaxis=dict( range=[0, width0 + width1], showgrid=False, zeroline=False, showticklabels=False, ), yaxis=dict( range=[max(height0, height1), 0], showgrid=False, zeroline=False, showticklabels=False, scaleanchor="x", scaleratio=1, ), margin=dict(l=0, r=0, t=50, b=0), height=max(height0, height1), width=width0 + width1, images=[ dict( source=pil_img, xref="x", yref="y", x=0, y=0, sizex=width0, sizey=height0, sizing="stretch", opacity=1, layer="below", ), dict( source=pil_img2, xref="x", yref="y", x=width0, y=0, sizex=width1, sizey=height1, sizing="stretch", opacity=1, layer="below", ), ], ) return fig # Create the Gradio interface with gr.Blocks(title="LightGlue Matching Demo") as demo: gr.Markdown("# LightGlue Matching Demo") gr.Markdown( "Upload two images and get a side-by-side matching of your images using LightGlue." ) gr.Markdown(""" ## How to use: 1. Upload two images using the file uploaders above 2. Click the 'Match Images' button 3. View the matched output image below The app will create a side-by-side matching of your images using LightGlue. You can also select an example image pair from the dataset. """) with gr.Row(): # Input images on the same row image1 = gr.Image(label="First Image", type="pil") image2 = gr.Image(label="Second Image", type="pil") # Process button process_btn = gr.Button("Match Images", variant="primary") # Output plot output_plot = gr.Plot(label="Matching Results") # Connect the function process_btn.click(fn=process_images, inputs=[image1, image2], outputs=output_plot) # Add some example usage examples = gr.Dataset( components=[image1, image2], label="Example Image Pairs", samples=[ [ "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg", "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg", ], [ "https://raw.githubusercontent.com/cvg/LightGlue/refs/heads/main/assets/DSC_0410.JPG", "https://raw.githubusercontent.com/cvg/LightGlue/refs/heads/main/assets/DSC_0411.JPG", ], [ "https://raw.githubusercontent.com/cvg/LightGlue/refs/heads/main/assets/sacre_coeur1.jpg", "https://raw.githubusercontent.com/cvg/LightGlue/refs/heads/main/assets/sacre_coeur2.jpg", ], [ "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/piazza_san_marco_06795901_3725050516.jpg", "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/piazza_san_marco_58751010_4849458397.jpg", ], [ "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/london_bridge_19481797_2295892421.jpg", "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/london_bridge_78916675_4568141288.jpg", ], ], ) examples.select(lambda x: (x[0], x[1]), [examples], [image1, image2]) if __name__ == "__main__": demo.launch()