sketch-to-BPMN / app.py
BenjiELCA's picture
add verification of length and ready for demo
ebef706
raw
history blame
11.7 kB
import streamlit as st
from torchvision.transforms import functional as F
import gc
import numpy as np
from modules.htlm_webpage import display_bpmn_xml
from streamlit_cropper import st_cropper
from streamlit_image_select import image_select
from streamlit_js_eval import streamlit_js_eval
from streamlit_drawable_canvas import st_canvas
from modules.streamlit_utils import *
from glob import glob
from streamlit_image_annotation import detection
from modules.toXML import create_XML
from modules.eval import develop_prediction, generate_data
from modules.utils import class_dict, object_dict
def configure_page():
st.set_page_config(layout="wide")
screen_width = streamlit_js_eval(js_expressions='screen.width', want_output=True, key='SCR')
is_mobile = screen_width is not None and screen_width < 800
return is_mobile, screen_width
def display_banner(is_mobile):
if is_mobile:
st.image("./images/banner_mobile.png", use_column_width=True)
else:
st.image("./images/banner_desktop.png", use_column_width=True)
def display_title(is_mobile):
title = "Welcome on the BPMN AI model recognition app"
if is_mobile:
title = "Welcome on the mobile version of BPMN AI model recognition app"
st.title(title)
def display_sidebar():
sidebar()
def initialize_session_state():
if 'pool_bboxes' not in st.session_state:
st.session_state.pool_bboxes = []
if 'model_object' not in st.session_state or 'model_arrow' not in st.session_state:
clear_memory()
load_models()
def load_example_image():
with st.expander("Use example images"):
img_selected = image_select(
"If you have no image and just want to test the demo, click on one of these images",
["./images/none.jpg", "./images/example1.jpg", "./images/example2.jpg", "./images/example3.jpg", "./images/example4.jpg"],
captions=["None", "Example 1", "Example 2", "Example 3", "Example 4"],
index=0,
use_container_width=False,
return_value="original"
)
return img_selected
def load_user_image(img_selected, is_mobile):
if img_selected == './images/none.jpg':
img_selected = None
if img_selected is not None:
uploaded_file = img_selected
else:
if is_mobile:
uploaded_file = st.file_uploader("Choose an image from my computer...", type=["jpg", "jpeg", "png"], accept_multiple_files=False)
else:
col1, col2 = st.columns(2)
with col1:
uploaded_file = st.file_uploader("Choose an image from my computer...", type=["jpg", "jpeg", "png"])
return uploaded_file
def display_image(uploaded_file, screen_width, is_mobile):
with st.spinner('Waiting for image display...'):
original_image = get_image(uploaded_file)
resized_image = original_image.resize((screen_width // 2, int(original_image.height * (screen_width // 2) / original_image.width)))
if not is_mobile:
cropped_image = crop_image(resized_image, original_image)
else:
st.image(resized_image, caption="Image", use_column_width=False, width=int(4/5 * screen_width))
cropped_image = original_image
return cropped_image
def crop_image(resized_image, original_image):
marge = 10
cropped_box = st_cropper(
resized_image,
realtime_update=True,
box_color='#0000FF',
return_type='box',
should_resize_image=False,
default_coords=(marge, resized_image.width - marge, marge, resized_image.height - marge)
)
scale_x = original_image.width / resized_image.width
scale_y = original_image.height / resized_image.height
x0, y0, x1, y1 = int(cropped_box['left'] * scale_x), int(cropped_box['top'] * scale_y), int((cropped_box['left'] + cropped_box['width']) * scale_x), int((cropped_box['top'] + cropped_box['height']) * scale_y)
cropped_image = original_image.crop((x0, y0, x1, y1))
return cropped_image
def get_score_threshold(is_mobile):
col1, col2 = st.columns(2)
with col1:
st.session_state.score_threshold = st.slider("Set score threshold for prediction", min_value=0.0, max_value=1.0, value=0.5 if not is_mobile else 0.6, step=0.05)
def launch_prediction(cropped_image, score_threshold, is_mobile, screen_width):
st.session_state.crop_image = cropped_image
with st.spinner('Processing...'):
perform_inference(
st.session_state.model_object, st.session_state.model_arrow, st.session_state.crop_image,
score_threshold, is_mobile, screen_width, iou_threshold=0.3, distance_treshold=30, percentage_text_dist_thresh=0.5
)
st.balloons()
def mix_new_pred(objects_pred, arrow_pred):
# Initialize the list of lists for keypoints
object_keypoints = []
# Number of boxes
num_boxes = len(objects_pred['boxes'])
# Iterate over the number of boxes
for _ in range(num_boxes):
# Each box has 2 keypoints, both initialized to [0, 0, 0]
keypoints = [[0, 0, 0], [0, 0, 0]]
object_keypoints.append(keypoints)
#concatenate the two predictions
boxes = np.concatenate((objects_pred['boxes'], arrow_pred['boxes']))
labels = np.concatenate((objects_pred['labels'], arrow_pred['labels']))
return boxes, labels, keypoints
def modify_results(percentage_text_dist_thresh=0.5):
with st.expander("Method and Style modification (beta version)"):
label_list = list(object_dict.values())
bboxes = [[int(coord) for coord in box] for box in st.session_state.prediction['boxes']]
for i in range(len(bboxes)):
bboxes[i][2] = bboxes[i][2] - bboxes[i][0]
bboxes[i][3] = bboxes[i][3] - bboxes[i][1]
labels = [int(label) for label in st.session_state.prediction['labels']]
# Filter boxes and labels where label is less than 12
ignore_labels = [6, 7]
object_bboxes = []
object_labels = []
arrow_bboxes = []
arrow_labels = []
for i in range(len(bboxes)):
if labels[i] <= 12:
object_bboxes.append(bboxes[i])
object_labels.append(labels[i])
else:
arrow_bboxes.append(bboxes[i])
arrow_labels.append(labels[i])
print('Object bboxes:', object_bboxes)
print('Object labels:', object_labels)
print('Arrow bboxes:', arrow_bboxes)
print('Arrow labels:', arrow_labels)
original_obj_len = len(object_bboxes)
uploaded_image = prepare_image(st.session_state.crop_image, new_size=(1333, 1333), pad=False)
scale = 2000 / uploaded_image.size[0]
new_labels = detection(
image=uploaded_image, bboxes=object_bboxes, labels=object_labels,
label_list=label_list, line_width=3, width=2000, use_space=False
)
if new_labels is not None:
new_lab = np.array([label['label_id'] for label in new_labels])
# Convert back to original format
bboxes = np.array([label['bbox'] for label in new_labels])
for i in range(len(bboxes)):
bboxes[i][2] = bboxes[i][2] + bboxes[i][0]
bboxes[i][3] = bboxes[i][3] + bboxes[i][1]
for i in range(len(arrow_bboxes)):
arrow_bboxes[i][2] = arrow_bboxes[i][2] + arrow_bboxes[i][0]
arrow_bboxes[i][3] = arrow_bboxes[i][3] + arrow_bboxes[i][1]
new_bbox = np.concatenate((bboxes, arrow_bboxes))
new_lab = np.concatenate((new_lab, arrow_labels))
print('New labels:', new_lab)
scores = st.session_state.prediction['scores']
keypoints = st.session_state.prediction['keypoints']
#delete element in keypoints to make it match the new number of boxes
len_keypoints = len(keypoints)
keypoints = keypoints.tolist()
scores = scores.tolist()
diff = original_obj_len-len(bboxes)
if diff > 0:
for i in range(diff):
keypoints.pop(0)
scores.pop(0)
elif diff < 0:
for i in range(-diff):
keypoints.insert(0, [[0, 0, 0], [0, 0, 0]])
scores.insert(0, 0.0)
print('lenghts: ',len(bboxes), len(new_lab), len(scores), len(keypoints))
keypoints = np.array(keypoints)
scores = np.array(scores)
#print('Old prediction:', st.session_state.prediction['keypoints'])
boxes, labels, scores, keypoints, flow_links, best_points, pool_dict = develop_prediction(new_bbox, new_lab, scores, keypoints, class_dict, correction=False)
st.session_state.prediction = generate_data(st.session_state.prediction['image'], boxes, labels, scores, keypoints, flow_links, best_points, pool_dict, class_dict)
st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=percentage_text_dist_thresh)
#print('New prediction:', st.session_state.prediction['keypoints'])
st.rerun()
def display_bpmn_modeler(is_mobile, screen_width):
with st.spinner('Waiting for BPMN modeler...'):
st.session_state.bpmn_xml = create_XML(
st.session_state.prediction.copy(), st.session_state.text_mapping,
st.session_state.size_scale, st.session_state.scale
)
display_bpmn_xml(st.session_state.bpmn_xml, is_mobile=is_mobile, screen_width=int(4/5 * screen_width))
def modeler_options(is_mobile):
if not is_mobile:
with st.expander("Options for BPMN modeler"):
col1, col2 = st.columns(2)
with col1:
st.session_state.scale = st.slider("Set distance scale for XML file", min_value=0.1, max_value=2.0, value=1.0, step=0.1)
st.session_state.size_scale = st.slider("Set size object scale for XML file", min_value=0.5, max_value=2.0, value=1.0, step=0.1)
else:
st.session_state.scale = 1.0
st.session_state.size_scale = 1.0
def main():
is_mobile, screen_width = configure_page()
display_banner(is_mobile)
display_title(is_mobile)
display_sidebar()
initialize_session_state()
cropped_image = None
img_selected = load_example_image()
uploaded_file = load_user_image(img_selected, is_mobile)
if uploaded_file is not None:
cropped_image = display_image(uploaded_file, screen_width, is_mobile)
if cropped_image is not None:
get_score_threshold(is_mobile)
if st.button("πŸš€ Launch Prediction"):
launch_prediction(cropped_image, st.session_state.score_threshold, is_mobile, screen_width)
st.session_state.original_prediction = st.session_state.prediction.copy()
st.rerun()
if 'prediction' in st.session_state and uploaded_file:
#if st.button("πŸ”„ Refresh image"):
#st.rerun()
with st.expander("Show result of prediction"):
with st.spinner('Waiting for result display...'):
display_options(st.session_state.crop_image, st.session_state.score_threshold, is_mobile, int(5/6 * screen_width))
if not is_mobile:
modify_results()
modeler_options(is_mobile)
display_bpmn_modeler(is_mobile, screen_width)
gc.collect()
if __name__ == "__main__":
print('Starting the app...')
main()