Spaces:
Running
Running
import streamlit as st | |
from torchvision.transforms import functional as F | |
import gc | |
import numpy as np | |
from modules.htlm_webpage import display_bpmn_xml | |
from streamlit_cropper import st_cropper | |
from streamlit_image_select import image_select | |
from streamlit_js_eval import streamlit_js_eval | |
from streamlit_drawable_canvas import st_canvas | |
from modules.streamlit_utils import * | |
from glob import glob | |
from streamlit_image_annotation import detection | |
from modules.toXML import create_XML | |
from modules.eval import develop_prediction, generate_data | |
from modules.utils import class_dict, object_dict | |
def configure_page(): | |
st.set_page_config(layout="wide") | |
screen_width = streamlit_js_eval(js_expressions='screen.width', want_output=True, key='SCR') | |
is_mobile = screen_width is not None and screen_width < 800 | |
return is_mobile, screen_width | |
def display_banner(is_mobile): | |
if is_mobile: | |
st.image("./images/banner_mobile.png", use_column_width=True) | |
else: | |
st.image("./images/banner_desktop.png", use_column_width=True) | |
def display_title(is_mobile): | |
title = "Welcome on the BPMN AI model recognition app" | |
if is_mobile: | |
title = "Welcome on the mobile version of BPMN AI model recognition app" | |
st.title(title) | |
def display_sidebar(): | |
sidebar() | |
def initialize_session_state(): | |
if 'pool_bboxes' not in st.session_state: | |
st.session_state.pool_bboxes = [] | |
if 'model_object' not in st.session_state or 'model_arrow' not in st.session_state: | |
clear_memory() | |
load_models() | |
def load_example_image(): | |
with st.expander("Use example images"): | |
img_selected = image_select( | |
"If you have no image and just want to test the demo, click on one of these images", | |
["./images/none.jpg", "./images/example1.jpg", "./images/example2.jpg", "./images/example3.jpg", "./images/example4.jpg"], | |
captions=["None", "Example 1", "Example 2", "Example 3", "Example 4"], | |
index=0, | |
use_container_width=False, | |
return_value="original" | |
) | |
return img_selected | |
def load_user_image(img_selected, is_mobile): | |
if img_selected == './images/none.jpg': | |
img_selected = None | |
if img_selected is not None: | |
uploaded_file = img_selected | |
else: | |
if is_mobile: | |
uploaded_file = st.file_uploader("Choose an image from my computer...", type=["jpg", "jpeg", "png"], accept_multiple_files=False) | |
else: | |
col1, col2 = st.columns(2) | |
with col1: | |
uploaded_file = st.file_uploader("Choose an image from my computer...", type=["jpg", "jpeg", "png"]) | |
return uploaded_file | |
def display_image(uploaded_file, screen_width, is_mobile): | |
with st.spinner('Waiting for image display...'): | |
original_image = get_image(uploaded_file) | |
resized_image = original_image.resize((screen_width // 2, int(original_image.height * (screen_width // 2) / original_image.width))) | |
if not is_mobile: | |
cropped_image = crop_image(resized_image, original_image) | |
else: | |
st.image(resized_image, caption="Image", use_column_width=False, width=int(4/5 * screen_width)) | |
cropped_image = original_image | |
return cropped_image | |
def crop_image(resized_image, original_image): | |
marge = 10 | |
cropped_box = st_cropper( | |
resized_image, | |
realtime_update=True, | |
box_color='#0000FF', | |
return_type='box', | |
should_resize_image=False, | |
default_coords=(marge, resized_image.width - marge, marge, resized_image.height - marge) | |
) | |
scale_x = original_image.width / resized_image.width | |
scale_y = original_image.height / resized_image.height | |
x0, y0, x1, y1 = int(cropped_box['left'] * scale_x), int(cropped_box['top'] * scale_y), int((cropped_box['left'] + cropped_box['width']) * scale_x), int((cropped_box['top'] + cropped_box['height']) * scale_y) | |
cropped_image = original_image.crop((x0, y0, x1, y1)) | |
return cropped_image | |
def get_score_threshold(is_mobile): | |
col1, col2 = st.columns(2) | |
with col1: | |
st.session_state.score_threshold = st.slider("Set score threshold for prediction", min_value=0.0, max_value=1.0, value=0.5 if not is_mobile else 0.6, step=0.05) | |
def launch_prediction(cropped_image, score_threshold, is_mobile, screen_width): | |
st.session_state.crop_image = cropped_image | |
with st.spinner('Processing...'): | |
perform_inference( | |
st.session_state.model_object, st.session_state.model_arrow, st.session_state.crop_image, | |
score_threshold, is_mobile, screen_width, iou_threshold=0.3, distance_treshold=30, percentage_text_dist_thresh=0.5 | |
) | |
st.balloons() | |
def mix_new_pred(objects_pred, arrow_pred): | |
# Initialize the list of lists for keypoints | |
object_keypoints = [] | |
# Number of boxes | |
num_boxes = len(objects_pred['boxes']) | |
# Iterate over the number of boxes | |
for _ in range(num_boxes): | |
# Each box has 2 keypoints, both initialized to [0, 0, 0] | |
keypoints = [[0, 0, 0], [0, 0, 0]] | |
object_keypoints.append(keypoints) | |
#concatenate the two predictions | |
boxes = np.concatenate((objects_pred['boxes'], arrow_pred['boxes'])) | |
labels = np.concatenate((objects_pred['labels'], arrow_pred['labels'])) | |
return boxes, labels, keypoints | |
def modify_results(percentage_text_dist_thresh=0.5): | |
with st.expander("Method and Style modification (beta version)"): | |
label_list = list(object_dict.values()) | |
bboxes = [[int(coord) for coord in box] for box in st.session_state.prediction['boxes']] | |
for i in range(len(bboxes)): | |
bboxes[i][2] = bboxes[i][2] - bboxes[i][0] | |
bboxes[i][3] = bboxes[i][3] - bboxes[i][1] | |
labels = [int(label) for label in st.session_state.prediction['labels']] | |
# Filter boxes and labels where label is less than 12 | |
ignore_labels = [6, 7] | |
object_bboxes = [] | |
object_labels = [] | |
arrow_bboxes = [] | |
arrow_labels = [] | |
for i in range(len(bboxes)): | |
if labels[i] <= 12: | |
object_bboxes.append(bboxes[i]) | |
object_labels.append(labels[i]) | |
else: | |
arrow_bboxes.append(bboxes[i]) | |
arrow_labels.append(labels[i]) | |
print('Object bboxes:', object_bboxes) | |
print('Object labels:', object_labels) | |
print('Arrow bboxes:', arrow_bboxes) | |
print('Arrow labels:', arrow_labels) | |
original_obj_len = len(object_bboxes) | |
uploaded_image = prepare_image(st.session_state.crop_image, new_size=(1333, 1333), pad=False) | |
scale = 2000 / uploaded_image.size[0] | |
new_labels = detection( | |
image=uploaded_image, bboxes=object_bboxes, labels=object_labels, | |
label_list=label_list, line_width=3, width=2000, use_space=False | |
) | |
if new_labels is not None: | |
new_lab = np.array([label['label_id'] for label in new_labels]) | |
# Convert back to original format | |
bboxes = np.array([label['bbox'] for label in new_labels]) | |
for i in range(len(bboxes)): | |
bboxes[i][2] = bboxes[i][2] + bboxes[i][0] | |
bboxes[i][3] = bboxes[i][3] + bboxes[i][1] | |
for i in range(len(arrow_bboxes)): | |
arrow_bboxes[i][2] = arrow_bboxes[i][2] + arrow_bboxes[i][0] | |
arrow_bboxes[i][3] = arrow_bboxes[i][3] + arrow_bboxes[i][1] | |
new_bbox = np.concatenate((bboxes, arrow_bboxes)) | |
new_lab = np.concatenate((new_lab, arrow_labels)) | |
print('New labels:', new_lab) | |
scores = st.session_state.prediction['scores'] | |
keypoints = st.session_state.prediction['keypoints'] | |
#delete element in keypoints to make it match the new number of boxes | |
len_keypoints = len(keypoints) | |
keypoints = keypoints.tolist() | |
scores = scores.tolist() | |
diff = original_obj_len-len(bboxes) | |
if diff > 0: | |
for i in range(diff): | |
keypoints.pop(0) | |
scores.pop(0) | |
elif diff < 0: | |
for i in range(-diff): | |
keypoints.insert(0, [[0, 0, 0], [0, 0, 0]]) | |
scores.insert(0, 0.0) | |
print('lenghts: ',len(bboxes), len(new_lab), len(scores), len(keypoints)) | |
keypoints = np.array(keypoints) | |
scores = np.array(scores) | |
#print('Old prediction:', st.session_state.prediction['keypoints']) | |
boxes, labels, scores, keypoints, flow_links, best_points, pool_dict = develop_prediction(new_bbox, new_lab, scores, keypoints, class_dict, correction=False) | |
st.session_state.prediction = generate_data(st.session_state.prediction['image'], boxes, labels, scores, keypoints, flow_links, best_points, pool_dict, class_dict) | |
st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=percentage_text_dist_thresh) | |
#print('New prediction:', st.session_state.prediction['keypoints']) | |
st.rerun() | |
def display_bpmn_modeler(is_mobile, screen_width): | |
with st.spinner('Waiting for BPMN modeler...'): | |
st.session_state.bpmn_xml = create_XML( | |
st.session_state.prediction.copy(), st.session_state.text_mapping, | |
st.session_state.size_scale, st.session_state.scale | |
) | |
display_bpmn_xml(st.session_state.bpmn_xml, is_mobile=is_mobile, screen_width=int(4/5 * screen_width)) | |
def modeler_options(is_mobile): | |
if not is_mobile: | |
with st.expander("Options for BPMN modeler"): | |
col1, col2 = st.columns(2) | |
with col1: | |
st.session_state.scale = st.slider("Set distance scale for XML file", min_value=0.1, max_value=2.0, value=1.0, step=0.1) | |
st.session_state.size_scale = st.slider("Set size object scale for XML file", min_value=0.5, max_value=2.0, value=1.0, step=0.1) | |
else: | |
st.session_state.scale = 1.0 | |
st.session_state.size_scale = 1.0 | |
def main(): | |
is_mobile, screen_width = configure_page() | |
display_banner(is_mobile) | |
display_title(is_mobile) | |
display_sidebar() | |
initialize_session_state() | |
cropped_image = None | |
img_selected = load_example_image() | |
uploaded_file = load_user_image(img_selected, is_mobile) | |
if uploaded_file is not None: | |
cropped_image = display_image(uploaded_file, screen_width, is_mobile) | |
if cropped_image is not None: | |
get_score_threshold(is_mobile) | |
if st.button("π Launch Prediction"): | |
launch_prediction(cropped_image, st.session_state.score_threshold, is_mobile, screen_width) | |
st.session_state.original_prediction = st.session_state.prediction.copy() | |
st.rerun() | |
if 'prediction' in st.session_state and uploaded_file: | |
#if st.button("π Refresh image"): | |
#st.rerun() | |
with st.expander("Show result of prediction"): | |
with st.spinner('Waiting for result display...'): | |
display_options(st.session_state.crop_image, st.session_state.score_threshold, is_mobile, int(5/6 * screen_width)) | |
if not is_mobile: | |
modify_results() | |
modeler_options(is_mobile) | |
display_bpmn_modeler(is_mobile, screen_width) | |
gc.collect() | |
if __name__ == "__main__": | |
print('Starting the app...') | |
main() | |