Spaces:
Sleeping
Sleeping
File size: 18,910 Bytes
615e9f1 acc7969 615e9f1 64b088f 615e9f1 9467fbe 9134c9f 64b088f 9134c9f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f ca37b38 64b088f ca37b38 615e9f1 ca37b38 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 acc7969 615e9f1 64b088f 615e9f1 64b088f 3250939 64b088f 615e9f1 3250939 615e9f1 00a4c90 64b088f 00a4c90 acc7969 00a4c90 64b088f 00a4c90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import torch
import torchvision.transforms.functional as F
import numpy as np
import cv2
import matplotlib.pyplot as plt
import streamlit as st
# Define dictionaries to map class indices to their corresponding names
object_dict = {
0: 'background',
1: 'task',
2: 'exclusiveGateway',
3: 'event',
4: 'parallelGateway',
5: 'messageEvent',
6: 'pool',
7: 'lane',
8: 'dataObject',
9: 'dataStore',
10: 'subProcess',
11: 'eventBasedGateway',
12: 'timerEvent',
}
arrow_dict = {
0: 'background',
1: 'sequenceFlow',
2: 'dataAssociation',
3: 'messageFlow',
}
class_dict = {
0: 'background',
1: 'task',
2: 'exclusiveGateway',
3: 'event',
4: 'parallelGateway',
5: 'messageEvent',
6: 'pool',
7: 'lane',
8: 'dataObject',
9: 'dataStore',
10: 'subProcess',
11: 'eventBasedGateway',
12: 'timerEvent',
13: 'sequenceFlow',
14: 'dataAssociation',
15: 'messageFlow',
}
def is_inside(box1, box2):
"""Check if the center of box1 is inside box2."""
x_center = (box1[0] + box1[2]) / 2
y_center = (box1[1] + box1[3]) / 2
return box2[0] <= x_center <= box2[2] and box2[1] <= y_center <= box2[3]
def is_vertical(box):
"""Determine if the text in the bounding box is vertically aligned."""
width = box[2] - box[0]
height = box[3] - box[1]
return (height > 2 * width)
def rescale_boxes(scale, boxes):
"""Rescale the bounding boxes by a given scale factor."""
for i in range(len(boxes)):
boxes[i] = [boxes[i][0] * scale, boxes[i][1] * scale, boxes[i][2] * scale, boxes[i][3] * scale]
return boxes
def iou(box1, box2):
"""Calculate the Intersection over Union (IoU) of two bounding boxes."""
inter_box = [max(box1[0], box2[0]), max(box1[1], box2[1]), min(box1[2], box2[2]), min(box1[3], box2[3])]
inter_area = max(0, inter_box[2] - inter_box[0]) * max(0, inter_box[3] - inter_box[1])
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
union_area = box1_area + box2_area - inter_area
return inter_area / union_area
def proportion_inside(box1, box2):
"""Calculate the proportion of the smaller box inside the larger box."""
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
big_box, small_box = (box1, box2) if box1_area > box2_area else (box2, box1)
inter_box = [max(small_box[0], big_box[0]), max(small_box[1], big_box[1]), min(small_box[2], big_box[2]), min(small_box[3], big_box[3])]
inter_area = max(0, inter_box[2] - inter_box[0]) * max(0, inter_box[3] - inter_box[1])
proportion = inter_area / ((small_box[2] - small_box[0]) * (small_box[3] - small_box[1]))
return min(proportion, 1.0)
def resize_boxes(boxes, original_size, target_size):
"""
Resizes bounding boxes according to a new image size.
Parameters:
- boxes (np.array): The original bounding boxes as a numpy array of shape [N, 4].
- original_size (tuple): The original size of the image as (width, height).
- target_size (tuple): The desired size to resize the image to as (width, height).
Returns:
- np.array: The resized bounding boxes as a numpy array of shape [N, 4].
"""
orig_width, orig_height = original_size
target_width, target_height = target_size
width_ratio = target_width / orig_width
height_ratio = target_height / orig_height
boxes[:, 0] *= width_ratio
boxes[:, 1] *= height_ratio
boxes[:, 2] *= width_ratio
boxes[:, 3] *= height_ratio
return boxes
def resize_keypoints(keypoints, original_size, target_size):
"""
Resize keypoints based on the original and target dimensions of an image.
Parameters:
- keypoints (np.ndarray): The array of keypoints, where each keypoint is represented by its (x, y) coordinates.
- original_size (tuple): The width and height of the original image (width, height).
- target_size (tuple): The width and height of the target image (width, height).
Returns:
- np.ndarray: The resized keypoints.
"""
orig_width, orig_height = original_size
target_width, target_height = target_size
width_ratio = target_width / orig_width
height_ratio = target_height / orig_height
keypoints[:, 0] *= width_ratio
keypoints[:, 1] *= height_ratio
return keypoints
def write_results(name_model, metrics_list, start_epoch):
"""Write training results to a text file."""
with open('./results/' + name_model + '.txt', 'w') as f:
for i in range(len(metrics_list[0])):
f.write(f"{i + 1 + start_epoch},{metrics_list[0][i]},{metrics_list[1][i]},{metrics_list[2][i]},{metrics_list[3][i]},{metrics_list[4][i]},{metrics_list[5][i]},{metrics_list[6][i]},{metrics_list[7][i]},{metrics_list[8][i]},{metrics_list[9][i]} \n")
def find_other_keypoint(idx, keypoints, boxes):
"""
Find the opposite keypoint to the center of the box.
Parameters:
- idx (int): The index of the box and keypoints.
- keypoints (np.ndarray): The array of keypoints.
- boxes (np.ndarray): The array of bounding boxes.
Returns:
- tuple: The coordinates of the new keypoint and the average keypoint.
"""
box = boxes[idx]
key1, key2 = keypoints[idx]
x1, y1, x2, y2 = box
center = ((x1 + x2) // 2, (y1 + y2) // 2)
average_keypoint = (key1 + key2) // 2
if average_keypoint[0] < center[0]:
x = center[0] + abs(center[0] - average_keypoint[0])
else:
x = center[0] - abs(center[0] - average_keypoint[0])
if average_keypoint[1] < center[1]:
y = center[1] + abs(center[1] - average_keypoint[1])
else:
y = center[1] - abs(center[1] - average_keypoint[1])
return x, y, average_keypoint[0], average_keypoint[1]
def filter_overlap_boxes(boxes, scores, labels, keypoints, iou_threshold=0.5):
"""
Filters overlapping boxes based on the Intersection over Union (IoU) metric, keeping only the boxes with the highest scores.
Parameters:
- boxes (np.ndarray): Array of bounding boxes with shape (N, 4), where each row contains [x_min, y_min, x_max, y_max].
- scores (np.ndarray): Array of scores for each box, reflecting the confidence of detection.
- labels (np.ndarray): Array of labels corresponding to each box.
- keypoints (np.ndarray): Array of keypoints associated with each box.
- iou_threshold (float): Threshold for IoU above which a box is considered overlapping.
Returns:
- tuple: Filtered boxes, scores, labels, and keypoints.
"""
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(boxes[i, 0], boxes[order[1:], 0])
yy1 = np.maximum(boxes[i, 1], boxes[order[1:], 1])
xx2 = np.minimum(boxes[i, 2], boxes[order[1:], 2])
yy2 = np.minimum(boxes[i, 3], boxes[order[1:], 3])
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
inter = w * h
iou = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(iou <= iou_threshold)[0]
order = order[inds + 1]
boxes = boxes[keep]
scores = scores[keep]
labels = labels[keep]
keypoints = keypoints[keep]
return boxes, scores, labels, keypoints
def draw_annotations(image,
target=None,
prediction=None,
full_prediction=None,
text_predictions=None,
model_dict=class_dict,
draw_keypoints=False,
draw_boxes=False,
draw_text=False,
draw_links=False,
draw_twins=False,
write_class=False,
write_score=False,
write_text=False,
write_idx=False,
score_threshold=0.4,
keypoints_correction=False,
only_print=None,
axis=False,
return_image=False,
new_size=(1333, 800),
resize=False):
"""
Draws annotations on images including bounding boxes, keypoints, links, and text.
Parameters:
- image (np.array): The image on which annotations will be drawn.
- target (dict): Ground truth data containing boxes, labels, etc.
- prediction (dict): Prediction data from a model.
- full_prediction (dict): Additional detailed prediction data, potentially including relationships.
- text_predictions (tuple): OCR text predictions containing bounding boxes and texts.
- model_dict (dict): Mapping from class IDs to class names.
- draw_keypoints (bool): Flag to draw keypoints.
- draw_boxes (bool): Flag to draw bounding boxes.
- draw_text (bool): Flag to draw text annotations.
- draw_links (bool): Flag to draw links between annotations.
- draw_twins (bool): Flag to draw twin keypoints.
- write_class (bool): Flag to write class names near the annotations.
- write_score (bool): Flag to write scores near the annotations.
- write_text (bool): Flag to write OCR recognized text.
- score_threshold (float): Threshold for scores above which annotations will be drawn.
- only_print (str): Specific class name to filter annotations by.
- resize (bool): Whether to resize annotations to fit the image size.
"""
# Convert image to RGB (if not already in that format)
if prediction is None:
image = image.squeeze(0).permute(1, 2, 0).cpu().numpy()
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_copy = image.copy()
scale = max(image.shape[0], image.shape[1]) / 1000
# Helper function to draw annotations based on provided data
def draw(data, is_prediction=False):
for i in range(len(data['boxes'])):
box = data['boxes'][i].tolist()
x1, y1, x2, y2 = box
if resize:
x1, y1, x2, y2 = resize_boxes(np.array([box]), new_size, (image_copy.shape[1], image_copy.shape[0]))[0]
if is_prediction:
score = data['scores'][i].item()
if score < score_threshold:
continue
if draw_boxes:
if only_print is not None:
if data['labels'][i] != list(model_dict.values()).index(only_print):
continue
cv2.rectangle(image_copy, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 0) if is_prediction else (0, 0, 0), int(2 * scale))
if is_prediction and write_score:
cv2.putText(image_copy, str(round(score, 2)), (int(x1), int(y1) + int(15 * scale)), cv2.FONT_HERSHEY_SIMPLEX, scale / 2, (100, 100, 255), 2)
if write_class and 'labels' in data:
class_id = data['labels'][i].item()
cv2.putText(image_copy, model_dict[class_id], (int(x1), int(y1) - int(2 * scale)), cv2.FONT_HERSHEY_SIMPLEX, scale / 2, (255, 100, 100), 2)
if write_idx:
cv2.putText(image_copy, str(i), (int(x1) + int(15 * scale), int(y1) + int(15 * scale)), cv2.FONT_HERSHEY_SIMPLEX, 2 * scale, (0, 0, 0), 2)
# Draw keypoints if available
if draw_keypoints and 'keypoints' in data:
if is_prediction and keypoints_correction:
for idx, (key1, key2) in enumerate(data['keypoints']):
if data['labels'][idx] not in [list(model_dict.values()).index('sequenceFlow'),
list(model_dict.values()).index('messageFlow'),
list(model_dict.values()).index('dataAssociation')]:
continue
distance = np.linalg.norm(key1[:2] - key2[:2])
if distance < 5:
x_new, y_new, x, y = find_other_keypoint(idx, data['keypoints'], data['boxes'])
data['keypoints'][idx][0] = torch.tensor([x_new, y_new, 1])
data['keypoints'][idx][1] = torch.tensor([x, y, 1])
print("keypoint has been changed")
for i in range(len(data['keypoints'])):
kp = data['keypoints'][i]
for j in range(kp.shape[0]):
if is_prediction and data['labels'][i] not in [list(model_dict.values()).index('sequenceFlow'),
list(model_dict.values()).index('messageFlow'),
list(model_dict.values()).index('dataAssociation')]:
continue
if is_prediction:
score = data['scores'][i]
if score < score_threshold:
continue
x, y, v = np.array(kp[j])
if resize:
x, y, v = resize_keypoints(np.array([kp[j]]), new_size, (image_copy.shape[1], image_copy.shape[0]))[0]
if j == 0:
cv2.circle(image_copy, (int(x), int(y)), int(5 * scale), (0, 0, 255), -1)
else:
cv2.circle(image_copy, (int(x), int(y)), int(5 * scale), (255, 0, 0), -1)
# Draw text predictions if available
if (draw_text or write_text) and text_predictions is not None:
for i in range(len(text_predictions[0])):
x1, y1, x2, y2 = text_predictions[0][i]
text = text_predictions[1][i]
if resize:
x1, y1, x2, y2 = resize_boxes(np.array([[float(x1), float(y1), float(x2), float(y2)]]), new_size, (image_copy.shape[1], image_copy.shape[0]))[0]
if draw_text:
cv2.rectangle(image_copy, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), int(2 * scale))
if write_text:
cv2.putText(image_copy, text, (int(x1 + int(2 * scale)), int((y1 + y2) / 2)), cv2.FONT_HERSHEY_SIMPLEX, scale / 2, (0, 0, 0), 2)
def draw_with_links(full_prediction):
"""Draws links between objects based on the full prediction data."""
if draw_twins and full_prediction is not None:
circle_color = (0, 255, 0)
circle_radius = int(10 * scale)
for idx, (key1, key2) in enumerate(full_prediction['keypoints']):
if full_prediction['labels'][idx] not in [list(model_dict.values()).index('sequenceFlow'),
list(model_dict.values()).index('messageFlow'),
list(model_dict.values()).index('dataAssociation')]:
continue
distance = np.linalg.norm(key1[:2] - key2[:2])
if distance < 10:
x_new, y_new, x, y = find_other_keypoint(idx, full_prediction['keypoints'], full_prediction['boxes'])
cv2.circle(image_copy, (int(x), int(y)), circle_radius, circle_color, -1)
cv2.circle(image_copy, (int(x_new), int(y_new)), circle_radius, (0, 0, 0), -1)
if draw_links and full_prediction is not None:
for i, (start_idx, end_idx) in enumerate(full_prediction['links']):
if start_idx is None or end_idx is None:
continue
start_box = full_prediction['boxes'][start_idx]
end_box = full_prediction['boxes'][end_idx]
current_box = full_prediction['boxes'][i]
start_center = ((start_box[0] + start_box[2]) // 2, (start_box[1] + start_box[3]) // 2)
end_center = ((end_box[0] + end_box[2]) // 2, (end_box[1] + end_box[3]) // 2)
current_center = ((current_box[0] + current_box[2]) // 2, (current_box[1] + current_box[3]) // 2)
cv2.line(image_copy, (int(start_center[0]), int(start_center[1])), (int(current_center[0]), int(current_center[1])), (0, 0, 255), int(2 * scale))
cv2.line(image_copy, (int(current_center[0]), int(current_center[1])), (int(end_center[0]), int(end_center[1])), (255, 0, 0), int(2 * scale))
i += 1
if target is not None:
draw(target, is_prediction=False)
if prediction is not None:
draw(prediction, is_prediction=True)
if full_prediction is not None:
draw_with_links(full_prediction)
image_copy = cv2.cvtColor(image_copy, cv2.COLOR_BGR2RGB)
plt.figure(figsize=(12, 12))
plt.imshow(image_copy)
if not axis:
plt.axis('off')
plt.show()
if return_image:
return image_copy
def find_closest_object(keypoint, boxes, labels):
"""
Find the closest object to a keypoint based on their proximity.
Parameters:
- keypoint (numpy.ndarray): The coordinates of the keypoint.
- boxes (numpy.ndarray): The bounding boxes of the objects.
Returns:
- int or None: The index of the closest object to the keypoint, or None if no object is found.
"""
closest_object_idx = None
best_point = None
min_distance = float('inf')
for i, box in enumerate(boxes):
if labels[i] in [list(class_dict.values()).index('sequenceFlow'),
list(class_dict.values()).index('messageFlow'),
list(class_dict.values()).index('dataAssociation'),
list(class_dict.values()).index('lane')]:
continue
x1, y1, x2, y2 = box
top = ((x1 + x2) / 2, y1)
bottom = ((x1 + x2) / 2, y2)
left = (x1, (y1 + y2) / 2)
right = (x2, (y1 + y2) / 2)
points = [left, top, right, bottom]
pos_dict = {0: 'left', 1: 'top', 2: 'right', 3: 'bottom'}
for pos, point in enumerate(points):
distance = np.linalg.norm(keypoint[:2] - point)
if distance < min_distance:
min_distance = distance
closest_object_idx = i
best_point = pos_dict[pos]
return closest_object_idx, best_point
def error(text='There is an error in the detection'):
"""Display an error message using Streamlit."""
st.error(text, icon="🚨")
def warning(text='Some element are maybe not detected, verify the results, try to modify the parameters or try to add it in the method and style step.'):
"""Display a warning message using Streamlit."""
st.warning(text, icon="⚠️")
|