File size: 44,688 Bytes
615e9f1
acc7969
e108fc3
00a4c90
 
 
b0e8a9d
e108fc3
6ceb9bd
64b088f
 
 
 
 
 
 
 
 
 
6ceb9bd
 
 
 
 
 
 
 
98b1103
 
64b088f
 
 
 
 
 
 
 
 
 
00a4c90
 
 
 
98b1103
 
 
 
64b088f
00a4c90
98b1103
 
 
 
64b088f
 
 
 
 
 
 
 
 
 
 
98b1103
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
 
 
 
 
 
 
 
 
00a4c90
64b088f
00a4c90
98b1103
 
64b088f
98b1103
00a4c90
98b1103
 
 
 
64b088f
 
 
 
 
 
 
 
 
98b1103
64b088f
98b1103
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
 
 
 
 
 
 
 
 
 
98b1103
 
 
 
64b088f
98b1103
 
 
 
 
64b088f
 
 
 
 
 
 
 
 
98b1103
64b088f
98b1103
 
 
 
 
 
 
 
 
 
 
 
51efe27
64b088f
 
 
 
 
 
 
98b1103
 
51efe27
98b1103
 
 
 
 
9467fbe
98b1103
 
 
 
 
 
 
 
 
ca37b38
64b088f
51efe27
98b1103
 
 
64b088f
 
 
 
 
 
 
98b1103
 
 
9467fbe
98b1103
 
 
 
 
 
 
 
00a4c90
98b1103
 
9467fbe
98b1103
 
 
 
 
 
64b088f
98b1103
 
 
 
64b088f
 
 
 
 
 
 
 
 
 
 
98b1103
 
 
 
ca37b38
51efe27
ca37b38
b0e8a9d
00a4c90
 
 
 
64b088f
 
 
 
 
 
 
 
 
 
 
 
00a4c90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc79c19
64b088f
ca37b38
1f38f38
00a4c90
64b088f
00a4c90
 
 
 
 
 
 
64b088f
 
6ceb9bd
00a4c90
 
 
 
64b088f
00a4c90
98b1103
00a4c90
 
 
 
6ceb9bd
00a4c90
6ceb9bd
 
b5c29c5
 
6ceb9bd
b0e8a9d
 
00a4c90
b0e8a9d
00a4c90
 
 
 
 
 
 
 
 
 
 
 
 
ebef706
 
 
00a4c90
 
 
 
 
 
 
 
 
64b088f
00a4c90
 
 
 
e108fc3
642c17f
1f38f38
64b088f
 
 
 
 
 
 
 
 
 
 
 
e7657c7
cc79c19
 
64b088f
1f38f38
cc79c19
 
 
 
e7657c7
cc79c19
 
642c17f
ca37b38
64b088f
 
 
 
 
 
 
 
 
e108fc3
64b088f
 
 
 
 
 
 
 
 
 
 
e108fc3
 
615e9f1
 
64b088f
 
 
 
 
 
 
 
 
 
615e9f1
64b088f
 
 
 
615e9f1
 
64b088f
 
 
 
 
 
 
 
6ceb9bd
64b088f
 
 
42199f1
 
 
 
 
 
64b088f
6ceb9bd
642c17f
 
615e9f1
9d60902
615e9f1
 
 
 
 
 
 
 
b506342
 
615e9f1
 
6ceb9bd
615e9f1
 
9d60902
 
 
 
 
 
 
 
 
 
 
 
b506342
 
9d60902
615e9f1
 
642c17f
 
 
 
 
 
64b088f
6ceb9bd
 
 
 
 
 
615e9f1
6ceb9bd
615e9f1
 
64b088f
 
 
 
 
 
 
 
 
 
 
615e9f1
 
 
 
 
 
 
 
 
 
 
 
64b088f
 
 
 
 
 
 
 
615e9f1
 
 
 
 
ebef706
 
615e9f1
 
 
 
 
 
64b088f
 
 
 
 
 
 
 
 
 
615e9f1
 
 
 
 
 
 
 
64b088f
615e9f1
64b088f
 
 
 
 
 
 
 
 
 
 
 
9134c9f
64b088f
9134c9f
64b088f
9134c9f
 
64b088f
9134c9f
 
615e9f1
9134c9f
 
64b088f
 
 
 
 
 
 
 
 
 
 
 
 
9134c9f
ca37b38
 
64b088f
9134c9f
64b088f
 
 
 
 
 
 
 
 
 
 
9134c9f
64b088f
9134c9f
64b088f
9134c9f
 
64b088f
9134c9f
 
 
 
64b088f
615e9f1
 
64b088f
 
 
 
 
 
 
 
 
 
 
 
615e9f1
 
 
 
 
ebef706
 
 
615e9f1
e3a1c49
615e9f1
 
 
 
 
 
 
9d60902
 
 
 
 
 
 
 
 
 
615e9f1
 
 
 
9134c9f
 
 
 
 
 
 
 
 
642c17f
b506342
9134c9f
642c17f
9134c9f
 
 
 
 
 
 
b506342
9134c9f
 
615e9f1
 
 
 
 
 
 
 
 
 
 
 
9134c9f
 
 
 
 
 
 
 
 
b506342
9134c9f
 
 
 
 
 
 
 
b506342
9134c9f
 
 
615e9f1
 
 
 
 
 
 
 
 
9134c9f
 
 
 
 
 
 
 
 
 
b506342
9134c9f
 
 
 
 
 
b506342
9134c9f
 
 
 
615e9f1
9134c9f
27a202c
615e9f1
 
642c17f
 
 
 
 
9134c9f
615e9f1
 
 
 
 
 
 
1f38f38
64b088f
 
 
 
 
 
 
 
 
 
 
 
 
b0e8a9d
 
 
615e9f1
b0e8a9d
1f38f38
615e9f1
b0e8a9d
 
 
615e9f1
 
1f38f38
3a0ed7b
 
 
1f38f38
 
 
 
 
615e9f1
3a0ed7b
615e9f1
 
 
 
 
ca37b38
615e9f1
 
64b088f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615e9f1
 
 
 
 
 
 
 
 
 
9134c9f
 
615e9f1
 
 
 
 
 
b0e8a9d
615e9f1
b0e8a9d
615e9f1
 
 
 
 
 
 
 
b0e8a9d
615e9f1
b0e8a9d
615e9f1
 
642c17f
 
 
 
64b088f
 
 
 
 
 
 
 
 
642c17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
642c17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3250939
64b088f
 
 
 
 
 
 
 
 
 
 
 
 
3250939
 
 
615e9f1
3250939
 
acc7969
642c17f
acc7969
 
 
 
 
642c17f
acc7969
3250939
 
 
ca37b38
 
 
 
 
642c17f
3250939
 
 
acc7969
 
 
 
64b088f
3250939
 
642c17f
3250939
 
642c17f
3250939
642c17f
3250939
 
642c17f
3250939
 
64b088f
3250939
 
642c17f
3250939
 
642c17f
3250939
642c17f
3250939
 
642c17f
3250939
 
642c17f
 
 
 
c96bc59
 
 
642c17f
c96bc59
642c17f
acc7969
64b088f
 
 
 
 
 
 
 
 
 
 
 
615e9f1
acc7969
 
 
 
 
615e9f1
 
 
 
 
 
 
9134c9f
 
 
 
 
 
 
 
 
 
 
 
acc7969
 
9134c9f
615e9f1
9134c9f
acc7969
 
615e9f1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
import xml.etree.ElementTree as ET
from modules.utils import class_dict, error, warning
import streamlit as st
from modules.utils import class_dict, rescale_boxes
import copy
from xml.dom import minidom
import numpy as np

def find_position(pool_index, BPMN_id):
    """
    Find the position of the pool index in the BPMN_id list.

    Args:
        pool_index (str): The pool index to search for.
        BPMN_id (list): List of BPMN IDs.

    Returns:
        int: The index of the pool_index in BPMN_id, or None if not found.
    """
    if pool_index in BPMN_id:
        position = BPMN_id.index(pool_index)
    else:
        position = None
        error(f"Problem with the pool index {pool_index} in the BPMN_id")

    return position

# Calculate the center of each bounding box and group them by pool
def calculate_centers_and_group_by_pool(pred, class_dict):
    """
    Calculate the center coordinates of bounding boxes and group them by pool.

    Args:
        pred (dict): Dictionary containing prediction results, including 'pool_dict', 'boxes', and 'labels'.
        class_dict (dict): Dictionary mapping class indices to class names.

    Returns:
        dict: Dictionary grouping centers and their indices by pool index.
    """
    pool_groups = {}
    for pool_index, element_indices in pred['pool_dict'].items():
        pool_groups[pool_index] = []
        for i in element_indices:
            if i >= len(pred['labels']):
                continue
            if class_dict[pred['labels'][i]] not in ['dataObject', 'dataStore']:
                x1, y1, x2, y2 = pred['boxes'][i]
                center = [(x1 + x2) / 2, (y1 + y2) / 2]  # Compute the center of the bounding box
                pool_groups[pool_index].append((center, i))
    return pool_groups

# Group centers within a specified range
def group_centers(centers, axis, range_=50):
    """
    Group centers based on a specified range along an axis.

    Args:
        centers (list): List of center coordinates and their indices.
        axis (int): The axis (0 for x, 1 for y) to group centers along.
        range_ (int): Maximum distance to consider centers as part of the same group.

    Returns:
        list: List of groups, where each group is a list of centers and indices.
    """
    groups = []
    while centers:
        center, idx = centers.pop(0)
        group = [(center, idx)]
        for other_center, other_idx in centers[:]:
            if abs(center[axis] - other_center[axis]) <= range_:
                group.append((other_center, other_idx))
                centers.remove((other_center, other_idx))
        groups.append(group)
    return groups

# Align the elements within each pool
def align_elements_within_pool(modified_pred, pool_groups, class_dict, size):
    """
    Align elements within each pool based on their centers.

    Args:
        modified_pred (dict): Dictionary containing the modified predictions.
        pool_groups (dict): Dictionary grouping centers and their indices by pool index.
        class_dict (dict): Dictionary mapping class indices to class names.
        size (dict): Dictionary containing element sizes.
    """
    for pool_index, centers in pool_groups.items():
        # Align elements based on y-coordinates
        y_groups = group_centers(centers.copy(), axis=1)
        align_y_coordinates(modified_pred, y_groups, class_dict, size)
        
        # Recalculate centers after y-alignment and then align based on x-coordinates
        centers = recalculate_centers(modified_pred, y_groups)
        x_groups = group_centers(centers.copy(), axis=0)
        align_x_coordinates(modified_pred, x_groups, class_dict, size)

# Align the y-coordinates of the centers of grouped bounding boxes
def align_y_coordinates(modified_pred, y_groups, class_dict, size):
    """
    Align the y-coordinates of elements in each group.

    Args:
        modified_pred (dict): Dictionary containing the modified predictions.
        y_groups (list): List of groups of centers and their indices, grouped by y-coordinate.
        class_dict (dict): Dictionary mapping class indices to class names.
        size (dict): Dictionary containing element sizes.
    """
    for group in y_groups:
        avg_y = sum([c[0][1] for c in group]) / len(group)  # Compute the average y-coordinate
        for (center, idx) in group:
            label = class_dict[modified_pred['labels'][idx]]
            if label in size:
                new_center = (center[0], avg_y)
                modified_pred['boxes'][idx] = [
                    new_center[0] - size[label][0] / 2, 
                    new_center[1] - size[label][1] / 2, 
                    new_center[0] + size[label][0] / 2, 
                    new_center[1] + size[label][1] / 2
                ]

# Recalculate centers after alignment
def recalculate_centers(modified_pred, groups):
    """
    Recalculate the centers of bounding boxes after alignment.

    Args:
        modified_pred (dict): Dictionary containing the modified predictions.
        groups (list): List of groups of centers and their indices.

    Returns:
        list: List of recalculated centers and their indices.
    """
    centers = []
    for group in groups:
        for center, idx in group:
            x1, y1, x2, y2 = modified_pred['boxes'][idx]
            center = [(x1 + x2) / 2, (y1 + y2) / 2]  # Recompute the center after alignment
            centers.append((center, idx))
    return centers

# Align the x-coordinates of the centers of grouped bounding boxes
def align_x_coordinates(modified_pred, x_groups, class_dict, size):
    """
    Align the x-coordinates of elements in each group.

    Args:
        modified_pred (dict): Dictionary containing the modified predictions.
        x_groups (list): List of groups of centers and their indices, grouped by x-coordinate.
        class_dict (dict): Dictionary mapping class indices to class names.
        size (dict): Dictionary containing element sizes.
    """
    for group in x_groups:
        avg_x = sum([c[0][0] for c in group]) / len(group)  # Compute the average x-coordinate
        for (center, idx) in group:
            label = class_dict[modified_pred['labels'][idx]]
            if label in size:
                new_center = (avg_x, center[1])
                modified_pred['boxes'][idx] = [
                    new_center[0] - size[label][0] / 2, 
                    modified_pred['boxes'][idx][1], 
                    new_center[0] + size[label][0] / 2, 
                    modified_pred['boxes'][idx][3]
                ]

# Expand the pool bounding boxes to fit the aligned elements
def expand_pool_bounding_boxes(modified_pred, size_elements):
    """
    Expand the bounding boxes of pools to fit aligned elements.

    Args:
        modified_pred (dict): Dictionary containing the modified predictions.
        size_elements (dict): Dictionary containing element sizes.
    """
    for idx, (pool_index, keep_elements) in enumerate(modified_pred['pool_dict'].items()):
        if len(keep_elements) != 0:
            marge = size_elements['task'][1] // 2
        else:
            marge = 0

        position = find_position(pool_index, modified_pred['BPMN_id'])

        if keep_elements == [] and position is not None:
            min_x, min_y, max_x, max_y = modified_pred['boxes'][position]
        else:
            min_x, min_y, max_x, max_y = calculate_pool_bounds(modified_pred['boxes'], modified_pred['labels'], keep_elements, size_elements)

        pool_width = max_x - min_x
        pool_height = max_y - min_y
        if pool_width < 300 or pool_height < 30:
            error("The pool is maybe too small, please add more elements or increase the scale by zooming on the image.")
            continue
        
        # Update the pool bounding box with margin
        modified_pred['boxes'][position] = [min_x - marge, min_y - marge//2, min_x + pool_width + marge, min_y + pool_height + marge//2]

# Adjust left and right boundaries of all pools
def adjust_pool_boundaries(modified_pred, pred):
    """
    Adjust the left and right boundaries of all pools to ensure they cover all elements.

    Args:
        modified_pred (dict): Dictionary containing the modified predictions.
        pred (dict): Dictionary containing original prediction results.
    """
    min_left, max_right = 0, 0
    for pool_index, element_indices in pred['pool_dict'].items():
        position = find_position(pool_index, modified_pred['BPMN_id'])
        if position is None or position >= len(modified_pred['boxes']):
            continue
        x1, y1, x2, y2 = modified_pred['boxes'][position]
        left = x1
        right = x2
        if left < min_left:
            min_left = left
        if right > max_right:
            max_right = right

    for pool_index, element_indices in pred['pool_dict'].items():
        position = find_position(pool_index, modified_pred['BPMN_id'])
        if position is None or position >= len(modified_pred['boxes']):
            continue
        x1, y1, x2, y2 = modified_pred['boxes'][position]
        if x1 > min_left:
            x1 = min_left
        if x2 < max_right:
            x2 = max_right
        # Update the pool bounding box with adjusted boundaries
        modified_pred['boxes'][position] = [x1, y1, x2, y2]

# Main function to align boxes
def align_boxes(pred, size, class_dict):
    """
    Main function to align bounding boxes for the given prediction data.

    Args:
        pred (dict): Dictionary containing prediction results.
        size (dict): Dictionary containing element sizes.
        class_dict (dict): Dictionary mapping class indices to class names.

    Returns:
        list: List of aligned bounding boxes.
    """
    modified_pred = copy.deepcopy(pred)
    pool_groups = calculate_centers_and_group_by_pool(pred, class_dict)
    align_elements_within_pool(modified_pred, pool_groups, class_dict, size)
    
    if len(pred['pool_dict']) > 1:
        expand_pool_bounding_boxes(modified_pred, size)
        adjust_pool_boundaries(modified_pred, pred)

    return modified_pred['boxes']

# Function to create a BPMN XML file from prediction results
def create_XML(full_pred, text_mapping, size_scale, scale):
    """
    Create a BPMN XML file from the prediction results.

    Args:
        full_pred (dict): Dictionary containing full prediction results.
        text_mapping (dict): Dictionary mapping BPMN IDs to text labels.
        size_scale (float): Scaling factor for element sizes.
        scale (float): Scaling factor for bounding boxes.

    Returns:
        str: Pretty-printed BPMN XML string.
    """
    namespaces = {
        'bpmn': 'http://www.omg.org/spec/BPMN/20100524/MODEL',
        'bpmndi': 'http://www.omg.org/spec/BPMN/20100524/DI',
        'di': 'http://www.omg.org/spec/DD/20100524/DI',
        'dc': 'http://www.omg.org/spec/DD/20100524/DC',
        'xsi': 'http://www.w3.org/2001/XMLSchema-instance'
    }

    definitions = ET.Element('bpmn:definitions', {
        'xmlns:xsi': namespaces['xsi'],
        'xmlns:bpmn': namespaces['bpmn'],
        'xmlns:bpmndi': namespaces['bpmndi'],
        'xmlns:di': namespaces['di'],
        'xmlns:dc': namespaces['dc'],
        'targetNamespace': "http://example.bpmn.com",
        'id': "simpleExample"
    })

    size_elements = get_size_elements(size_scale)

    # If there is no pool or lane, create a pool with all elements
    if len(full_pred['pool_dict']) == 0 or (len(full_pred['pool_dict']) == 1 and len(next(iter(full_pred['pool_dict'].values()))) == len(full_pred['labels'])):
        full_pred, text_mapping = create_big_pool(full_pred, text_mapping, size_elements)
    
    # Backup the original box positions
    old_boxes = copy.deepcopy(full_pred)

    # Create BPMN collaboration element
    collaboration = ET.SubElement(definitions, 'bpmn:collaboration', id='collaboration_1')

    # Create BPMN process elements
    process = []
    for idx in range(len(full_pred['pool_dict'].items())):
        process_id = f'process_{idx+1}'
        process.append(ET.SubElement(definitions, 'bpmn:process', id=process_id, isExecutable='false'))

    bpmndi = ET.SubElement(definitions, 'bpmndi:BPMNDiagram', id='BPMNDiagram_1')
    bpmnplane = ET.SubElement(bpmndi, 'bpmndi:BPMNPlane', id='BPMNPlane_1', bpmnElement='collaboration_1')

    # Rescale and align bounding boxes
    full_pred['boxes'] = rescale_boxes(scale, old_boxes['boxes'])
    full_pred['boxes'] = align_boxes(full_pred, size_elements, class_dict)

    # Add diagram elements for each pool
    for idx, (pool_index, keep_elements) in enumerate(full_pred['pool_dict'].items()):
        pool_id = f'participant_{idx+1}'
        pool = ET.SubElement(collaboration, 'bpmn:participant', id=pool_id, processRef=f'process_{idx+1}', name=text_mapping[pool_index])
        
        position = find_position(pool_index, full_pred['BPMN_id'])
        if position >= len(full_pred['boxes']):
            print("Problem with the index")
            continue
        min_x, min_y, max_x, max_y = full_pred['boxes'][position]
        pool_width = max_x - min_x
        pool_height = max_y - min_y
        
        add_diagram_elements(bpmnplane, pool_id, min_x, min_y, pool_width, pool_height)

    # Create BPMN elements for each pool
    for idx, (pool_index, keep_elements) in enumerate(full_pred['pool_dict'].items()):
        create_bpmn_object(process[idx], bpmnplane, text_mapping, definitions, size_elements, full_pred, keep_elements)

    # Create message flow elements
    message_flows = [i for i, label in enumerate(full_pred['labels']) if class_dict[label] == 'messageFlow']
    for idx in message_flows:
        create_flow_element(bpmnplane, text_mapping, idx, size_elements, full_pred, collaboration, message=True)

    # Create sequence flow elements
    for idx, (pool_index, keep_elements) in enumerate(full_pred['pool_dict'].items()):
        for i in keep_elements:
            if i >= len(full_pred['labels']):
                print("Problem with the index")
                continue
            if full_pred['labels'][i] == list(class_dict.values()).index('sequenceFlow'):
                create_flow_element(bpmnplane, text_mapping, i, size_elements, full_pred, process[idx], message=False)
    
    # Generate pretty XML string
    tree = ET.ElementTree(definitions)
    rough_string = ET.tostring(definitions, 'utf-8')
    reparsed = minidom.parseString(rough_string)
    pretty_xml_as_string = reparsed.toprettyxml(indent="  ")

    # Restore the original box positions
    full_pred['boxes'] = rescale_boxes(1/scale, full_pred['boxes'])
    full_pred['boxes'] = old_boxes

    return pretty_xml_as_string

# Function that creates a single pool with all elements
def create_big_pool(full_pred, text_mapping, size_elements, marge=50):
    """
    Create a single pool containing all elements if no pools or lanes are detected.

    Args:
        full_pred (dict): Dictionary containing full prediction results.
        text_mapping (dict): Dictionary mapping BPMN IDs to text labels.
        size_elements (dict): Dictionary containing element sizes.
        marge (int, optional): Margin to add around the pool. Defaults to 50.

    Returns:
        tuple: Updated full_pred and text_mapping.
    """
    new_pool_index = 'pool_1'
    size_elements = get_size_elements(st.session_state.size_scale)
    elements_pool = list(range(len(full_pred['boxes'])))
    min_x, min_y, max_x, max_y = calculate_pool_bounds(full_pred['boxes'], full_pred['labels'], elements_pool, size_elements)
    box = [min_x - marge, min_y - marge//2, max_x + marge, max_y + marge//2]
    full_pred['boxes'] = np.append(full_pred['boxes'], [box], axis=0)
    full_pred['pool_dict'][new_pool_index] = elements_pool
    full_pred['BPMN_id'].append('pool_1')
    text_mapping['pool_1'] = 'Process'
    print(f"Created a big pool index {new_pool_index} with elements: {elements_pool}")
    return full_pred, text_mapping

# Function that gives the size of the elements
def get_size_elements(size_scale=1):
    """
    Get the sizes of BPMN elements based on the scaling factor.

    Args:
        size_scale (float, optional): Scaling factor for element sizes. Defaults to 1.

    Returns:
        dict: Dictionary containing element sizes.
    """
    size_elements = {
        'event': (size_scale * 43.2, size_scale * 43.2),
        'task': (size_scale * 120, size_scale * 96),
        'message': (size_scale * 43.2, size_scale * 43.2),
        'messageEvent': (size_scale * 43.2, size_scale * 43.2),
        'exclusiveGateway': (size_scale * 60, size_scale * 60),
        'parallelGateway': (size_scale * 60, size_scale * 60),
        'dataObject': (size_scale * 48, size_scale * 72),
        'dataStore': (size_scale * 72, size_scale * 72),
        'subProcess': (size_scale * 144, size_scale * 108),
        'eventBasedGateway': (size_scale * 60, size_scale * 60),
        'timerEvent': (size_scale * 48, size_scale * 48),
    }
    return size_elements

def rescale(scale, boxes):
    """
    Rescale the bounding boxes by a given scaling factor.

    Args:
        scale (float): Scaling factor.
        boxes (list): List of bounding boxes.

    Returns:
        list: Rescaled bounding boxes.
    """
    for i in range(len(boxes)):
        boxes[i] = [boxes[i][0] * scale,
                    boxes[i][1] * scale,
                    boxes[i][2] * scale,
                    boxes[i][3] * scale]
    return boxes

# Function to create the unique BPMN_id
def create_BPMN_id(labels, pool_dict):
    """
    Create unique BPMN IDs for each element based on their labels.

    Args:
        labels (list): List of labels for each element.
        pool_dict (dict): Dictionary containing pool indices and their elements.

    Returns:
        tuple: List of BPMN IDs and updated pool dictionary.
    """

    #change the label to task if it's subProcess
    for i in range(len(labels)):
        if labels[i] == list(class_dict.values()).index('subProcess'):
            labels[i] = list(class_dict.values()).index('task')

    BPMN_id = [class_dict[labels[i]] for i in range(len(labels))]

    data_counter = 1

    enums = {
        'event': 1,
        'task': 1,
        'sequenceFlow': 1,
        'messageFlow': 1,
        'message_event': 1,
        'exclusiveGateway': 1,
        'parallelGateway': 1,
        'dataAssociation': 1,
        'pool': 1,
        'timerEvent': 1,
        'eventBasedGateway': 1
    }

    BPMN_name = [class_dict[label] for label in labels]

    for idx, Bpmn_id in enumerate(BPMN_name):
        key = {
            'event': 'event',
            'task': 'task',
            'dataObject': 'dataObject',
            'sequenceFlow': 'sequenceFlow',
            'messageFlow': 'messageFlow',
            'messageEvent': 'message_event',
            'exclusiveGateway': 'exclusiveGateway',
            'parallelGateway': 'parallelGateway',
            'dataAssociation': 'dataAssociation',
            'pool': 'pool',
            'dataStore': 'dataStore',
            'timerEvent': 'timerEvent',
            'eventBasedGateway': 'eventBasedGateway'
        }.get(Bpmn_id, None)

        if key:
            if key in ['dataObject', 'dataStore']:
                BPMN_id[idx] = f'{key}_{data_counter}'
                data_counter += 1
            else:
                BPMN_id[idx] = f'{key}_{enums[key]}'
                enums[key] += 1

    # Update the pool_dict keys with their corresponding BPMN_id values
    updated_pool_dict = {}
    for key, value in pool_dict.items():
        if key < len(BPMN_id):
            new_key = BPMN_id[key]
            updated_pool_dict[new_key] = value

    return BPMN_id, updated_pool_dict

def add_diagram_elements(parent, element_id, x, y, width, height):
    """
    Utility to add BPMN diagram notation for elements.

    Args:
        parent (Element): The parent XML element.
        element_id (str): The ID of the BPMN element.
        x (float): The x-coordinate of the element.
        y (float): The y-coordinate of the element.
        width (float): The width of the element.
        height (float): The height of the element.
    """
    shape = ET.SubElement(parent, 'bpmndi:BPMNShape', attrib={
        'bpmnElement': element_id,
        'id': element_id + '_di'
    })
    bounds = ET.SubElement(shape, 'dc:Bounds', attrib={
        'x': str(x),
        'y': str(y),
        'width': str(width),
        'height': str(height)
    })

def add_diagram_edge(parent, element_id, waypoints):
    """
    Utility to add BPMN diagram notation for sequence flows.

    Args:
        parent (Element): The parent XML element.
        element_id (str): The ID of the BPMN element.
        waypoints (list): List of waypoints for the sequence flow.
    """
    edge = ET.SubElement(parent, 'bpmndi:BPMNEdge', attrib={
        'bpmnElement': element_id,
        'id': element_id + '_di'
    })
    for x, y in waypoints:
        if x is None or y is None:
            return
        ET.SubElement(edge, 'di:waypoint', attrib={
            'x': str(x),
            'y': str(y)
        })

def check_status(link, keep_elements):
    """
    Check the status of a link in terms of its position within the elements.

    Args:
        link (tuple): A tuple representing the start and end of the link.
        keep_elements (list): List of elements to keep.

    Returns:
        str: Status of the link ('middle', 'start', or 'end').
    """
    if link[0] in keep_elements and link[1] in keep_elements:
        return 'middle'
    elif link[0] is None and link[1] in keep_elements:
        return 'start'
    elif link[0] in keep_elements and link[1] is None:
        return 'end'
    else:
        return 'middle'

def check_data_association(i, links, labels, keep_elements):
    """
    Check data associations for an element.

    Args:
        i (int): Index of the current element.
        links (list): List of links between elements.
        labels (list): List of labels for each element.
        keep_elements (list): List of elements to keep.

    Returns:
        tuple: Status and indices of data associations.
    """
    status, links_idx = [], []
    for j, (k, l) in enumerate(links):
        if labels[j] == list(class_dict.values()).index('dataAssociation'):
            if k == i:
                status.append('output')
                links_idx.append(j)
            elif l == i:
                status.append('input')
                links_idx.append(j)

    return status, links_idx

def create_data_Association(bpmn, data, size, element_id, current_idx, source_id, target_id):
    """
    Create a data association in the BPMN diagram.

    Args:
        bpmn (Element): The parent XML element.
        data (dict): Dictionary containing prediction results.
        size (dict): Dictionary containing element sizes.
        element_id (str): The ID of the BPMN element.
        current_idx (int): Index of the current element.
        source_id (str): The source element ID.
        target_id (str): The target element ID.
    """
    waypoints = calculate_waypoints(data, size, current_idx, source_id, target_id)
    if waypoints is not None:
        add_diagram_edge(bpmn, element_id, waypoints)

def check_eventBasedGateway(i, links, labels):
    """
    Check event-based gateway for an element.

    Args:
        i (int): Index of the current element.
        links (list): List of links between elements.
        labels (list): List of labels for each element.

    Returns:
        tuple: Status and indices of event-based gateway.
    """
    status, links_idx = [], []
    for j, (k, l) in enumerate(links):
        if labels[j] == list(class_dict.values()).index('sequenceFlow'):
            if k == i:
                status.append('output')
                links_idx.append(j)
            elif l == i:
                status.append('input')
                links_idx.append(j)

    return status, links_idx

# Function to dynamically create and layout BPMN elements
def create_bpmn_object(process, bpmnplane, text_mapping, definitions, size, data, keep_elements):
    """
    Dynamically create and layout BPMN elements.

    Args:
        process (Element): The BPMN process element.
        bpmnplane (Element): The BPMN plane element.
        text_mapping (dict): Dictionary mapping BPMN IDs to text labels.
        definitions (Element): The BPMN definitions element.
        size (dict): Dictionary containing element sizes.
        data (dict): Dictionary containing prediction results.
        keep_elements (list): List of elements to keep.
    """
    elements = data['BPMN_id']
    positions = data['boxes']
    links = data['links']

    for i in keep_elements:
        if i >= len(elements):
            print("Problem with the index")
            continue
        element_id = elements[i]

        if element_id is None:
            continue
        
        element_type = element_id.split('_')[0]
        x, y = positions[i][:2]

        # Start Event
        if element_type == 'event':
            status = check_status(links[i], keep_elements)
            if status == 'start':
                element = ET.SubElement(process, 'bpmn:startEvent', id=element_id, name=text_mapping[element_id])
            elif status == 'middle':
                element = ET.SubElement(process, 'bpmn:intermediateCatchEvent', id=element_id, name=text_mapping[element_id])
            elif status == 'end':
                element = ET.SubElement(process, 'bpmn:endEvent', id=element_id, name=text_mapping[element_id])

            add_diagram_elements(bpmnplane, element_id, x, y, size['event'][0], size['event'][1])

        # Task
        elif element_type == 'task':
            element = ET.SubElement(process, 'bpmn:task', id=element_id, name=text_mapping[element_id])
            status, datasAssociation_idx = check_data_association(i, data['links'], data['labels'], keep_elements)

            if len(status) != 0:
                for state, dataAssociation_idx in zip(status, datasAssociation_idx):
                    # Handle Data Input Association
                    if state == 'input':
                        dataObject_idx = links[dataAssociation_idx][0]
                        dataObject_name = elements[dataObject_idx]
                        dataObject_ref = f'DataObjectReference_{dataObject_name.split("_")[1]}'
                        ET.SubElement(element, 'bpmn:property', id=f'Property_{dataAssociation_idx}_{dataObject_ref.split("_")[1]}', name='__targetRef_placeholder')
                        sub_element = ET.SubElement(element, 'bpmn:dataInputAssociation', id=f'dataInAsso_{dataAssociation_idx}_{dataObject_ref.split("_")[1]}')
                        ET.SubElement(sub_element, 'bpmn:sourceRef').text = dataObject_ref
                        ET.SubElement(sub_element, 'bpmn:targetRef').text = f"Property_{dataAssociation_idx}_{dataObject_ref.split('_')[1]}"
                        create_data_Association(bpmnplane, data, size, sub_element.attrib['id'], dataAssociation_idx, dataObject_name, element_id)

                    # Handle Data Output Association
                    elif state == 'output':
                        dataObject_idx = links[dataAssociation_idx][1]
                        dataObject_name = elements[dataObject_idx]
                        dataObject_ref = f'DataObjectReference_{dataObject_name.split("_")[1]}'
                        sub_element = ET.SubElement(element, 'bpmn:dataOutputAssociation', id=f'dataOutAsso_{dataAssociation_idx}_{dataObject_ref.split("_")[1]}')
                        ET.SubElement(sub_element, 'bpmn:targetRef').text = dataObject_ref
                        create_data_Association(bpmnplane, data, size, sub_element.attrib['id'], dataAssociation_idx, element_id, dataObject_name)

            add_diagram_elements(bpmnplane, element_id, x, y, size['task'][0], size['task'][1])

        # Message Events (Start, Intermediate, End)
        elif element_type == 'message':
            status = check_status(links[i], keep_elements)
            if status == 'start':
                element = ET.SubElement(process, 'bpmn:startEvent', id=element_id, name=text_mapping[element_id])
            elif status == 'middle':
                element = ET.SubElement(process, 'bpmn:intermediateCatchEvent', id=element_id, name=text_mapping[element_id])
            elif status == 'end':
                element = ET.SubElement(process, 'bpmn:endEvent', id=element_id, name=text_mapping[element_id])

            status, datasAssociation_idx = check_data_association(i, data['links'], data['labels'], keep_elements)
            if len(status) != 0:
                for state, dataAssociation_idx in zip(status, datasAssociation_idx):
                    # Handle Data Input Association
                    if state == 'input':
                        dataObject_idx = links[dataAssociation_idx][0]
                        dataObject_name = elements[dataObject_idx]
                        dataObject_ref = f'DataObjectReference_{dataObject_name.split("_")[1]}'
                        sub_element = ET.SubElement(element, 'bpmn:dataInputAssociation', id=f'dataInAsso_{dataAssociation_idx}_{dataObject_ref.split("_")[1]}')
                        ET.SubElement(sub_element, 'bpmn:sourceRef').text = dataObject_ref
                        create_data_Association(bpmnplane, data, size, sub_element.attrib['id'], dataAssociation_idx, dataObject_name, element_id)

                    # Handle Data Output Association
                    elif state == 'output':
                        dataObject_idx = links[dataAssociation_idx][1]
                        dataObject_name = elements[dataObject_idx]
                        dataObject_ref = f'DataObjectReference_{dataObject_name.split("_")[1]}'
                        sub_element = ET.SubElement(element, 'bpmn:dataOutputAssociation', id=f'dataOutAsso_{dataAssociation_idx}_{dataObject_ref.split("_")[1]}')
                        ET.SubElement(sub_element, 'bpmn:targetRef').text = dataObject_ref
                        create_data_Association(bpmnplane, data, size, sub_element.attrib['id'], dataAssociation_idx, element_id, dataObject_name)

            ET.SubElement(element, 'bpmn:messageEventDefinition', id=f'MessageEventDefinition_{i+1}')
            add_diagram_elements(bpmnplane, element_id, x, y, size['message'][0], size['message'][1])

        # Gateways (Exclusive, Parallel)
        elif element_type in ['exclusiveGateway', 'parallelGateway']:
            gateway_type = 'exclusiveGateway' if element_type == 'exclusiveGateway' else 'parallelGateway'
            element = ET.SubElement(process, f'bpmn:{gateway_type}', id=element_id)
            add_diagram_elements(bpmnplane, element_id, x, y, size[element_type][0], size[element_type][1])

        elif element_type == 'eventBasedGateway':
            element = ET.SubElement(process, 'bpmn:eventBasedGateway', id=element_id)
            status, links_idx = check_eventBasedGateway(i, data['links'], data['labels'])

            if len(status) != 0:
                for state, link_idx in zip(status, links_idx):
                    # Handle Data Input Association
                    if state == 'input' :
                        gateway_idx = links[link_idx][0]
                        gateway_name = elements[gateway_idx]
                        sub_element = ET.SubElement(element, 'bpmn:eventBasedGateway', id=f'eventBasedGateway_{link_idx}_{gateway_name.split("_")[1]}')
                        create_data_Association(bpmnplane, data, size, sub_element.attrib['id'], i, gateway_name, element_id)

                    # Handle Data Output Association
                    elif state == 'output':
                        gateway_idx = links[link_idx][1]
                        gateway_name = elements[gateway_idx]
                        sub_element = ET.SubElement(element, 'bpmn:eventBasedGateway', id=f'eventBasedGateway_{link_idx}_{gateway_name.split("_")[1]}')
                        create_data_Association(bpmnplane, data, size, sub_element.attrib['id'], i, element_id, gateway_name)

            add_diagram_elements(bpmnplane, element_id, x, y, size['eventBasedGateway'][0], size['eventBasedGateway'][1])

        # Data Object
        elif element_type == 'dataObject' or element_type == 'dataStore':
            #print('ici dataObject', element_id)
            dataObject_idx = element_id.split('_')[1]
            dataObject_ref = f'DataObjectReference_{dataObject_idx}'
            if element_type == 'dataObject':
                ET.SubElement(process, 'bpmn:dataObjectReference', id=dataObject_ref, dataObjectRef=element_id, name=text_mapping[element_id])
                ET.SubElement(process, f'bpmn:{element_type}', id=element_id)
            elif element_type == 'dataStore':
                ET.SubElement(process, 'bpmn:dataStoreReference', id=dataObject_ref, name=text_mapping[element_id])
            add_diagram_elements(bpmnplane, dataObject_ref, x, y, size[element_type][0], size[element_type][1])

        # Timer Event
        elif element_type == 'timerEvent':
            element = ET.SubElement(process, 'bpmn:intermediateCatchEvent', id=element_id, name=text_mapping[element_id])
            ET.SubElement(element, 'bpmn:timerEventDefinition', id=f'TimerEventDefinition_{i+1}')
            add_diagram_elements(bpmnplane, element_id, x, y, size['timerEvent'][0], size['timerEvent'][1])

def calculate_pool_bounds(boxes, labels, keep_elements, size=None, class_dict=None):
    """
    Calculate the bounding box for a pool.

    Args:
        boxes (list): List of bounding boxes.
        labels (list): List of labels for each element.
        keep_elements (list): List of elements to keep.
        size (dict, optional): Dictionary containing element sizes. Defaults to None.
        class_dict (dict, optional): Dictionary mapping class indices to class names. Defaults to None.

    Returns:
        tuple: Minimum and maximum x and y coordinates of the pool.
    """
    min_x, min_y = float('inf'), float('inf')
    max_x, max_y = float('-inf'), float('-inf')

    for i in keep_elements:
        if i >= len(labels):
            print(f"Problem with the index: {i}")
            continue
        
        element = labels[i]
        if element in {None, 7, 13, 14, 15}: 
            continue
        
        if size is None or class_dict is None:
            element_width = boxes[i][2] - boxes[i][0]
            element_height = boxes[i][3] - boxes[i][1]
        else:
            if labels[i] in class_dict:
                element_width, element_height = size[class_dict[labels[i]]]
            else:
                print(f"Class label {labels[i]} not found in class_dict.")
                continue
        
        x, y = boxes[i][:2]
        min_x = min(min_x, x)
        min_y = min(min_y, y)
        max_x = max(max_x, x + element_width)
        max_y = max(max_y, y + element_height)
    
    return min_x, min_y, max_x, max_y

def calculate_pool_waypoints(idx, data, size, source_idx, target_idx, source_element, target_element):
    """
    Calculate waypoints for connecting elements within a pool.

    Args:
        idx (int): Index of the current element.
        data (dict): Dictionary containing prediction results.
        size (dict): Dictionary containing element sizes.
        source_idx (int): Index of the source element.
        target_idx (int): Index of the target element.
        source_element (str): Source element type.
        target_element (str): Target element type.

    Returns:
        list: List of waypoints for the connection.
    """
    # Get the bounding boxes of the source and target elements
    source_box = data['boxes'][source_idx]
    target_box = data['boxes'][target_idx]

    # Get the midpoints of the source element
    source_mid_x = (source_box[0] + source_box[2]) / 2
    source_mid_y = (source_box[1] + source_box[3]) / 2

    # Check if the connection involves a pool
    if source_element == 'pool':
        if target_element == 'pool':
            return [(source_mid_x, source_mid_y), (source_mid_x, source_mid_y)]
        pool_box = source_box
        element_box = (target_box[0], target_box[1], target_box[0]+size[target_element][0], target_box[1]+size[target_element][1])
        element_mid_x = (element_box[0] + element_box[2]) / 2
        element_mid_y = (element_box[1] + element_box[3]) / 2
        # Connect the pool's bottom or top side to the target element's top or bottom center
        if pool_box[3] < element_box[1]:  # Pool is above the target element
            waypoints = [(element_mid_x, pool_box[3]), (element_mid_x, element_box[1])]
        else:  # Pool is below the target element
            waypoints = [(element_mid_x, element_box[3]), (element_mid_x, pool_box[1])]
    else:
        pool_box = target_box
        element_box = (source_box[0], source_box[1], source_box[0]+size[source_element][0], source_box[1]+size[source_element][1])
        element_mid_x = (element_box[0] + element_box[2]) / 2
        element_mid_y = (element_box[1] + element_box[3]) / 2

        # Connect the element's bottom or top center to the pool's top or bottom side
        if pool_box[3] < element_box[1]:  # Pool is above the target element
            waypoints = [(element_mid_x, element_box[1]), (element_mid_x, pool_box[3])]
        else:  # Pool is below the target element
            waypoints = [(element_mid_x, element_box[3]), (element_mid_x, pool_box[1])]

    return waypoints
def add_curve(waypoints, pos_source, pos_target, threshold=30):
    """
    Add a single curve to the sequence flow by introducing a control point.
    The control point is added at an offset from the midpoint of the original waypoints.

    Args:
        waypoints (list): List of waypoints representing the path.
        pos_source (str): Position of the source element ('left', 'right', 'top', 'bottom').
        pos_target (str): Position of the target element ('left', 'right', 'top', 'bottom').
        threshold (int, optional): Minimum distance to consider for adding a curve. Defaults to 30.

    Returns:
        list: List of waypoints with the added control point if applicable.
    """
    if len(waypoints) < 2:
        return waypoints

    # Extract start and end points
    start_point = waypoints[0]
    end_point = waypoints[1]

    start_x, start_y = start_point
    end_x, end_y = end_point

    pos_horizontal = ['left', 'right']
    pos_vertical = ['top', 'bottom']

    if abs(start_x - end_x) < threshold or abs(start_y - end_y) < threshold:
        return waypoints

    # Calculate the control point based on source and target positions
    if pos_source in pos_horizontal and pos_target in pos_horizontal:
        control_point = None
    elif pos_source in pos_vertical and pos_target in pos_vertical:
        control_point = None
    elif pos_source in pos_horizontal and pos_target in pos_vertical:
        control_point = (end_x, start_y)
    elif pos_source in pos_vertical and pos_target in pos_horizontal:
        control_point = (start_x, end_y)
    else:
        control_point = None

    # Create the curved path
    if control_point is not None:
        curved_waypoints = [start_point, control_point, end_point]
    else:
        curved_waypoints = [start_point, end_point]

    return curved_waypoints

def calculate_waypoints(data, size, current_idx, source_id, target_id):
    """
    Calculate waypoints for connecting two elements in the diagram.

    Args:
        data (dict): Data containing diagram information.
        size (dict): Dictionary of element sizes.
        current_idx (int): Index of the current element.
        source_id (str): ID of the source element.
        target_id (str): ID of the target element.

    Returns:
        list: List of waypoints for the connection.
    """
    best_points = data['best_points'][current_idx]
    pos_source = best_points[0]
    pos_target = best_points[1]

    source_idx = data['BPMN_id'].index(source_id)
    target_idx = data['BPMN_id'].index(target_id)

    if source_idx == target_idx:
        warning()
        return None

    if source_idx is None or target_idx is None:
        warning()
        return None

    name_source = source_id.split('_')[0]
    name_target = target_id.split('_')[0]

    avoid_element = ['pool', 'sequenceFlow', 'messageFlow', 'dataAssociation']
    if name_target in avoid_element or name_source in avoid_element:
        warning()
        return None

    # Get the position of the source and target
    source_x, source_y = data['boxes'][source_idx][:2]
    target_x, target_y = data['boxes'][target_idx][:2]

    if name_source == 'pool' or name_target == 'pool':
        warning()
        return [(source_x, source_y), (target_x, target_y)]

    # Adjust the source coordinates based on its position
    if pos_source == 'left':
        source_x = source_x
        source_y += size[name_source][1] / 2
    elif pos_source == 'right':
        source_x += size[name_source][0]
        source_y += size[name_source][1] / 2
    elif pos_source == 'top':
        source_x += size[name_source][0] / 2
        source_y = source_y
    elif pos_source == 'bottom':
        source_x += size[name_source][0] / 2
        source_y += size[name_source][1]

    # Adjust the target coordinates based on its position
    if pos_target == 'left':
        target_x = target_x
        target_y += size[name_target][1] / 2
    elif pos_target == 'right':
        target_x += size[name_target][0]
        target_y += size[name_target][1] / 2
    elif pos_target == 'top':
        target_x += size[name_target][0] / 2
        target_y = target_y
    elif pos_target == 'bottom':
        target_x += size[name_target][0] / 2
        target_y += size[name_target][1]

    waypoints = [(source_x, source_y), (target_x, target_y)]

    # Add curve if no obstacles are in the path
    if data['labels'][current_idx] == list(class_dict.values()).index('sequenceFlow'):
        curved_waypoints = add_curve(waypoints, pos_source, pos_target)
    else:
        curved_waypoints = waypoints

    return curved_waypoints

def create_flow_element(bpmn, text_mapping, idx, size, data, parent, message=False):  
    """
    Create a BPMN flow element (sequence flow or message flow) and add it to the BPMN diagram.

    Args:
        bpmn (ET.Element): The BPMN diagram element.
        text_mapping (dict): Dictionary mapping element IDs to their text labels.
        idx (int): Index of the current element.
        size (dict): Dictionary of element sizes.
        data (dict): Data containing diagram information.
        parent (ET.Element): The parent element to which the flow element is added.
        message (bool, optional): Whether the flow is a message flow. Defaults to False.
    """
    source_idx, target_idx = data['links'][idx]

    if source_idx is None or target_idx is None:
        warning()
        return

    source_id, target_id = data['BPMN_id'][source_idx], data['BPMN_id'][target_idx]
    if message:
        element_id = f'messageflow_{source_id}_{target_id}'
    else:
        element_id = f'sequenceflow_{source_id}_{target_id}'

    if message:
        if source_id.split('_')[0] == 'pool' or target_id.split('_')[0] == 'pool':
            waypoints = calculate_pool_waypoints(idx, data, size, source_idx, target_idx, source_id.split('_')[0], target_id.split('_')[0])
            if source_id.split('_')[0] == 'pool':
                XML_source_id = f"participant_{source_id.split('_')[1]}"
                XML_target_id = target_id
            if target_id.split('_')[0] == 'pool':
                XML_target_id = f"participant_{target_id.split('_')[1]}"
                XML_source_id = source_id

            element = ET.SubElement(parent, 'bpmn:messageFlow', id=element_id, sourceRef=XML_source_id, targetRef=XML_target_id, name=text_mapping[data['BPMN_id'][idx]])
        else:
            waypoints = calculate_waypoints(data, size, idx, source_id, target_id)
            if waypoints is None:
                return
            element = ET.SubElement(parent, 'bpmn:messageFlow', id=element_id, sourceRef=source_id, targetRef=target_id, name=text_mapping[data['BPMN_id'][idx]])
    else:
        waypoints = calculate_waypoints(data, size, idx, source_id, target_id)
        if waypoints is None:
            return
        element = ET.SubElement(parent, 'bpmn:sequenceFlow', id=element_id, sourceRef=source_id, targetRef=target_id, name=text_mapping[data['BPMN_id'][idx]])
    add_diagram_edge(bpmn, element_id, waypoints)