File size: 28,912 Bytes
e108fc3
 
 
 
 
 
 
 
 
cbbc2ce
e108fc3
 
00a4c90
e108fc3
 
 
 
b0e8a9d
 
 
 
 
 
 
 
ee93af8
cbbc2ce
 
ca37b38
 
64b088f
e108fc3
64b088f
 
 
e108fc3
 
 
 
64b088f
e108fc3
64b088f
 
 
e108fc3
 
 
 
 
64b088f
 
 
 
 
 
 
 
 
e108fc3
 
 
cbbc2ce
 
 
e108fc3
 
64b088f
 
 
 
 
 
 
 
 
cbbc2ce
e108fc3
cbbc2ce
e108fc3
91857b0
 
e108fc3
 
 
 
 
 
 
 
cbbc2ce
 
 
 
 
 
 
 
 
9467fbe
cbbc2ce
 
 
 
 
 
 
 
 
 
 
9467fbe
cbbc2ce
64b088f
cbbc2ce
 
 
 
 
 
e108fc3
 
 
 
 
 
64b088f
 
 
 
 
 
 
 
 
 
 
e108fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
00a4c90
e108fc3
 
 
64b088f
 
 
 
 
 
 
 
 
e108fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebef706
e108fc3
 
 
 
 
 
 
 
64b088f
e108fc3
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00a4c90
 
e108fc3
 
 
 
 
 
 
64b088f
e108fc3
 
 
 
 
 
 
9467fbe
 
 
 
64b088f
e108fc3
64b088f
e108fc3
 
 
 
 
 
00a4c90
 
64b088f
e108fc3
 
64b088f
 
 
 
 
 
 
 
 
b0e8a9d
 
64b088f
b0e8a9d
64b088f
 
 
 
 
 
 
 
b0e8a9d
 
 
 
 
64b088f
b0e8a9d
d6aec26
64b088f
d6aec26
64b088f
 
 
 
d6aec26
 
b0e8a9d
d6aec26
 
 
 
b0e8a9d
d6aec26
 
 
 
b0e8a9d
64b088f
b0e8a9d
64b088f
 
 
 
 
 
b0e8a9d
 
 
 
 
64b088f
b0e8a9d
64b088f
 
 
b999af1
 
64b088f
b999af1
8d48eae
b999af1
8d48eae
439a251
94ef2bf
 
b999af1
 
8d48eae
b999af1
 
8d48eae
 
 
 
64b088f
b0e8a9d
64b088f
 
 
b0e8a9d
 
cbbc2ce
 
 
b0e8a9d
 
cbbc2ce
b0e8a9d
64b088f
b0e8a9d
64b088f
 
 
 
 
 
b0e8a9d
 
 
 
 
 
 
 
 
 
 
64b088f
b0e8a9d
64b088f
 
 
 
 
 
 
 
 
 
b0e8a9d
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
b0e8a9d
64b088f
 
 
 
 
 
 
 
 
 
 
210f0e9
 
 
 
 
 
 
 
 
 
 
 
b0e8a9d
 
 
 
210f0e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e8a9d
210f0e9
b0e8a9d
64b088f
b0e8a9d
 
 
 
64b088f
b0e8a9d
64b088f
 
 
 
 
 
 
 
 
 
b0e8a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
b0e8a9d
64b088f
 
 
 
 
 
b0e8a9d
 
64b088f
b0e8a9d
 
64b088f
 
 
 
 
 
 
 
 
 
 
 
b0e8a9d
 
64b088f
b0e8a9d
 
 
 
6bc613e
b0e8a9d
 
64b088f
439a251
64b088f
 
 
 
 
 
 
439a251
b0e8a9d
3a0ed7b
 
 
 
 
 
b0e8a9d
 
 
cc79c19
 
 
 
 
 
3a0ed7b
b0e8a9d
cc79c19
b0e8a9d
 
 
 
 
 
 
3a0ed7b
b0e8a9d
 
 
 
3a0ed7b
 
 
b0e8a9d
3a0ed7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b088f
3a0ed7b
 
 
 
 
b0e8a9d
 
 
cc79c19
 
 
3a0ed7b
cc79c19
 
b0e8a9d
 
 
cc79c19
 
b0e8a9d
ca37b38
b0e8a9d
6ceb9bd
b0e8a9d
 
3a0ed7b
ca37b38
3a0ed7b
 
e49e1d2
 
b0e8a9d
64b088f
 
 
 
 
 
 
b0e8a9d
 
 
 
 
ca37b38
64b088f
 
ca37b38
 
 
64b088f
 
 
 
 
 
 
 
 
 
ca37b38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e8a9d
 
64b088f
 
 
 
 
 
b0e8a9d
 
 
 
ca37b38
 
 
b0e8a9d
 
 
64b088f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
import streamlit as st
from PIL import Image, ImageEnhance
import torch
from torchvision.transforms import functional as F
import gc
import psutil
import numpy as np
from pathlib import Path
import gdown
import os

from modules.OCR import text_prediction, filter_text, mapping_text
from modules.utils import class_dict, arrow_dict, object_dict
from modules.display import draw_stream
from modules.eval import full_prediction
from modules.train import get_faster_rcnn_model, get_arrow_model
from streamlit_image_comparison import image_comparison
from streamlit_image_annotation import detection
from modules.toXML import create_XML
from modules.eval import develop_prediction, generate_data
from modules.utils import class_dict, object_dict
from modules.htlm_webpage import display_bpmn_xml
from streamlit_cropper import st_cropper
from streamlit_image_select import image_select
from streamlit_js_eval import streamlit_js_eval
from modules.toWizard import create_wizard_file
from huggingface_hub import hf_hub_download
import time
from modules.toXML import get_size_elements

# Function to get memory usage
def get_memory_usage():
    """
    Returns the current memory usage of the process in MB.
    """
    process = psutil.Process()
    mem_info = process.memory_info()
    return mem_info.rss / (1024 ** 2)  # Return memory usage in MB

# Function to clear memory
def clear_memory():
    """
    Clears the Streamlit session state and triggers garbage collection.
    """
    st.session_state.clear()
    gc.collect()

# Function to read XML content from a file
def read_xml_file(filepath):
    """
    Reads and returns the content of an XML file.
    
    Parameters:
    - filepath (str): The path to the XML file.
    
    Returns:
    - str: The content of the XML file.
    """
    with open(filepath, 'r', encoding='utf-8') as file:
        return file.read()

# Suppress the symlink warning
os.environ['HF_HUB_DISABLE_SYMLINKS_WARNING'] = '1'

# Function to load the models only once and use session state to keep track of it
def load_models():
    """
    Loads the object and arrow detection models, either from the local file or 
    downloads from the Hugging Face Hub if not available locally. The models 
    are stored in the Streamlit session state.
    
    Returns:
    - model_object (torch.nn.Module): The loaded object detection model.
    - model_arrow (torch.nn.Module): The loaded arrow detection model.
    """
    with st.spinner('Loading model...'):
        model_object = get_faster_rcnn_model(len(object_dict))
        model_arrow = get_arrow_model(len(arrow_dict), 2)

        model_arrow_path = hf_hub_download(repo_id="ELCA-SA/BPMN_Detection", filename="model_arrow.pth")
        model_object_path = hf_hub_download(repo_id="ELCA-SA/BPMN_Detection", filename="model_object.pth")

        # Define paths to save models
        output_arrow = 'model_arrow.pth'
        output_object = 'model_object.pth'

        # Load models
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

        # Load model arrow
        if not Path(output_arrow).exists():
            model_arrow.load_state_dict(torch.load(model_arrow_path, map_location=device))
            st.session_state.model_arrow = model_arrow
            print('Model arrow downloaded from Hugging Face Hub')
            # Save the model locally
            torch.save(model_arrow.state_dict(), output_arrow)
        elif 'model_arrow' not in st.session_state and Path(output_arrow).exists():
            model_arrow.load_state_dict(torch.load(output_arrow, map_location=device))
            print()
            st.session_state.model_arrow = model_arrow
            print('Model arrow loaded from local file')

        # Load model object
        if not Path(output_object).exists():
            model_object.load_state_dict(torch.load(model_object_path, map_location=device))
            st.session_state.model_object = model_object
            print('Model object downloaded from Hugging Face Hub')
            torch.save(model_object.state_dict(), output_object)
        elif 'model_object' not in st.session_state and Path(output_object).exists():
            model_object.load_state_dict(torch.load(output_object, map_location=device))
            print()
            st.session_state.model_object = model_object
            print('Model object loaded from local file')

        # Move models to device
        model_arrow.to(device)
        model_object.to(device)

        # Update session state
        st.session_state.model_loaded = True

        return model_object, model_arrow

# Function to prepare the image for processing
def prepare_image(image, pad=True, new_size=(1333, 1333)):
    """
    Resizes and optionally pads the input image to a new size.
    
    Parameters:
    - image (PIL.Image): The image to be processed.
    - pad (bool): Whether to pad the image to the new size.
    - new_size (tuple): The target size for the image.
    
    Returns:
    - PIL.Image: The processed image.
    """
    original_size = image.size
    # Calculate scale to fit the new size while maintaining aspect ratio
    scale = min(new_size[0] / original_size[0], new_size[1] / original_size[1])
    new_scaled_size = (int(original_size[0] * scale), int(original_size[1] * scale))
    # Resize image to new scaled size
    image = F.resize(image, (new_scaled_size[1], new_scaled_size[0]))

    if pad:
        enhancer = ImageEnhance.Brightness(image)
        image = enhancer.enhance(1.0)  # Adjust the brightness if necessary
        # Pad the resized image to make it exactly the desired size
        padding = [0, 0, new_size[0] - new_scaled_size[0], new_size[1] - new_scaled_size[1]]
        image = F.pad(image, padding, fill=200, padding_mode='edge')

    return image

# Function to display various options for image annotation
def display_options(image, score_threshold, is_mobile, screen_width):
    """
    Displays various options for image annotation and draws the annotated image.
    
    Parameters:
    - image (PIL.Image): The image to be annotated.
    - score_threshold (float): The score threshold for displaying annotations.
    - is_mobile (bool): Flag indicating if the device is mobile.
    - screen_width (int): The width of the screen.
    """
    col1, col2, col3, col4, col5 = st.columns(5)
    with col1:
        write_class = st.toggle("Write Class", value=True)
        draw_keypoints = st.toggle("Draw Keypoints", value=True)
        draw_boxes = st.toggle("Draw Boxes", value=True)
    with col2:
        draw_text = st.toggle("Draw Text", value=False)
        write_text = st.toggle("Write Text", value=False)
        draw_links = st.toggle("Draw Links", value=False)
    with col3:
        write_score = st.toggle("Write Score", value=True)
        write_idx = st.toggle("Write Index", value=False)
    with col4:
        # Define options for the dropdown menu
        dropdown_options = [list(class_dict.values())[i] for i in range(len(class_dict))]
        dropdown_options[0] = 'all'
        selected_option = st.selectbox("Show class", dropdown_options)

    # Draw the annotated image with selected options
    annotated_image = draw_stream(
        np.array(image), prediction=st.session_state.original_prediction, text_predictions=st.session_state.text_pred,
        draw_keypoints=draw_keypoints, draw_boxes=draw_boxes, draw_links=draw_links, draw_twins=False, draw_grouped_text=draw_text,
        write_class=write_class, write_text=write_text, keypoints_correction=True, write_idx=write_idx, only_show=selected_option,
        score_threshold=score_threshold, write_score=write_score, resize=True, return_image=True, axis=True
    )

    if is_mobile is True:
        width = screen_width
    else:
        width = screen_width // 2

    # Display the original and annotated images side by side
    image_comparison(
        img1=annotated_image,
        img2=image,
        label1="Annotated Image",
        label2="Original Image",
        starting_position=99,
        width=width,
    )

# Function to perform inference on the uploaded image using the loaded models
def perform_inference(model_object, model_arrow, image, score_threshold, is_mobile, screen_width, iou_threshold=0.5, distance_treshold=30, percentage_text_dist_thresh=0.5):
    """
    Performs inference on the uploaded image using the loaded models and updates 
    the session state with predictions and text mappings.
    
    Parameters:
    - model_object (torch.nn.Module): The object detection model.
    - model_arrow (torch.nn.Module): The arrow detection model.
    - image (PIL.Image): The uploaded image.
    - score_threshold (float): The score threshold for displaying annotations.
    - is_mobile (bool): Flag indicating if the device is mobile.
    - screen_width (int): The width of the screen.
    - iou_threshold (float): The IoU threshold for filtering boxes.
    - distance_treshold (int): The distance threshold for matching keypoints.
    - percentage_text_dist_thresh (float): The percentage distance threshold for text mapping.
    
    Returns:
    - tuple: The processed image, prediction, and text mapping.
    """
    uploaded_image = prepare_image(image, pad=False)
    img_tensor = F.to_tensor(prepare_image(image.convert('RGB')))

    # Display original image
    if 'image_placeholder' not in st.session_state:
        image_placeholder = st.empty()  # Create an empty placeholder
    if is_mobile is False:
        width = screen_width
        if is_mobile is False:
            width = screen_width // 2
        image_placeholder.image(uploaded_image, caption='Original Image', width=width)

    # Perform OCR on the uploaded image
    ocr_results = text_prediction(uploaded_image)

    # Filter and map OCR results to prediction results
    st.session_state.text_pred = filter_text(ocr_results, threshold=0.6)

    # Prediction
    _, st.session_state.prediction = full_prediction(model_object, model_arrow, img_tensor, score_threshold=score_threshold, iou_threshold=iou_threshold, distance_treshold=distance_treshold)

    # Mapping text to prediction
    st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=percentage_text_dist_thresh)

    # Remove the original image display
    image_placeholder.empty()

    # Force garbage collection
    gc.collect()

    return image, st.session_state.prediction, st.session_state.text_mapping

# Function to get the image from the uploaded file
@st.cache_data
def get_image(uploaded_file):
    """
    Opens and converts the uploaded image file to RGB format.
    
    Parameters:
    - uploaded_file: The uploaded image file.
    
    Returns:
    - PIL.Image: The opened and converted image.
    """
    return Image.open(uploaded_file).convert('RGB')

# Function to configure the Streamlit page
def configure_page():
    """
    Configures the Streamlit page layout and returns the screen width 
    and a flag indicating if the device is mobile.
    
    Returns:
    - is_mobile (bool): Flag indicating if the device is mobile.
    - screen_width (int): The width of the screen.
    """
    st.set_page_config(layout="wide")
    screen_width = streamlit_js_eval(js_expressions='screen.width', want_output=True, key='SCR')
    is_mobile = screen_width is not None and screen_width < 800
    return is_mobile, screen_width

# Function to display the banner based on device type and theme
def display_banner(is_mobile):
    """
    Displays the appropriate banner image based on device type and dark mode preference.
    
    Parameters:
    - is_mobile (bool): Flag indicating if the device is mobile.
    """
    dark_mode_js = "(window.matchMedia && window.matchMedia('(prefers-color-scheme: dark)').matches)"
    is_dark_mode = streamlit_js_eval(js_expressions=dark_mode_js, key='dark_mode')

    if is_mobile:
        if is_dark_mode:
            st.image("./images/banner_mobile_dark.png", use_column_width=True)
        else:
            st.image("./images/banner_mobile.png", use_column_width=True)
    else:
        if is_dark_mode:
            st.image("./images/banner_desktop_dark.png", use_column_width=True)
        else:
            st.image("./images/banner_desktop.png", use_column_width=True)

# Function to display the title based on device type
def display_title(is_mobile):
    """
    Displays the title of the app based on device type.
    
    Parameters:
    - is_mobile (bool): Flag indicating if the device is mobile.
    """
    title = "Welcome on the BPMN AI model recognition app"
    if is_mobile:
        title = "Welcome on the mobile version of BPMN AI model recognition app"
    st.title(title)

# Function to display the sidebar with instructions and information
def display_sidebar():
    """
    Displays the sidebar with instructions and information about the app.
    """
    st.sidebar.header("This BPMN AI model recognition is proposed by: \n ELCA in collaboration with EPFL.")
    st.sidebar.subheader("Instructions:")
    st.sidebar.text("1. Upload your image")
    st.sidebar.text("2. Crop the image \n  (try to put the BPMN diagram \n   in the center of the image)")
    st.sidebar.text("3. Set the score threshold for\n   prediction (default is 0.5)")
    st.sidebar.text("4. Click on 'Launch Prediction'")
    st.sidebar.text("5. You can now see the\n   annotation and the BPMN XML\n   result")
    st.sidebar.text("6. You can modify the result \n   by clicking on:\n   'Modify prediction'")
    st.sidebar.text("7. You can change the scale for \n   the XML file and the size of \n   elements (default is 1.0)")
    st.sidebar.text("8. You can modify with modeler \n   and download the result in \n   right format")
    st.sidebar.subheader("If there is an error, try to:")
    st.sidebar.text("1. Change the score threshold")
    st.sidebar.text("2. Re-crop the image by placing\n   the BPMN diagram in the\n   center of the image")
    st.sidebar.text("3. Re-Launch the prediction")
    st.sidebar.subheader("You can close this sidebar")
    for i in range(5):
        st.sidebar.subheader("")
    st.sidebar.subheader("Made with ❤️ by Benjamin.K")

# Function to initialize session state variables
def initialize_session_state():
    """
    Initializes the session state variables for the app.
    """
    if 'pool_bboxes' not in st.session_state:
        st.session_state.pool_bboxes = []
    if 'model_loaded' not in st.session_state:
        st.session_state.model_loaded = False
    if not st.session_state.model_loaded:
        clear_memory()
        load_models()
        st.rerun()

# Function to load example images for testing
def load_example_image():
    """
    Loads example images for testing the app and returns the selected image.
    
    Returns:
    - str: The path to the selected example image.
    """
    with st.expander("Use example images"):
        img_selected = image_select(
            "If you have no image and just want to test the demo, click on one of these images", 
            ["./images/none.jpg", "./images/example1.jpg", "./images/example2.jpg", "./images/example3.jpg", "./images/example4.jpg"],
            captions=["None", "Example 1", "Example 2", "Example 3", "Example 4"], 
            index=0, 
            use_container_width=False, 
            return_value="original"
        )
        return img_selected

# Function to load user-uploaded images or selected example images
def load_user_image(img_selected, is_mobile):
    """
    Loads the user-uploaded image or the selected example image.
    
    Parameters:
    - img_selected (str): The path to the selected example image.
    - is_mobile (bool): Flag indicating if the device is mobile.
    
    Returns:
    - str: The path to the uploaded image file.
    """
    if img_selected == './images/none.jpg':
        img_selected = None
    if img_selected is not None:
        uploaded_file = img_selected
    else:
        if is_mobile:
            uploaded_file = st.file_uploader("Choose an image from my computer...", type=["jpg", "jpeg", "png"], accept_multiple_files=False)
        else:
            col1, col2 = st.columns(2)
            with col1:
                uploaded_file = st.file_uploader("Choose an image from my computer...", type=["jpg", "jpeg", "png"])
    return uploaded_file

# Function to display the uploaded or example image
def display_image(uploaded_file, screen_width, is_mobile):
    """
    Displays the uploaded or selected example image with options to rotate and adjust brightness.
    
    Parameters:
    - uploaded_file: The uploaded image file.
    - screen_width (int): The width of the screen.
    - is_mobile (bool): Flag indicating if the device is mobile.
    
    Returns:
    - PIL.Image: The cropped and adjusted image.
    """
    if 'rotation_angle' not in st.session_state:
        st.session_state.rotation_angle = 0  # Initialize the rotation angle in session state
    if 'brightness' not in st.session_state:
        st.session_state.brightness = 1.0  # Initialize brightness in session state

    def rotate_image(angle):
        st.session_state.rotation_angle += angle

    def adjust_brightness(image, brightness):
        enhancer = ImageEnhance.Brightness(image)
        return enhancer.enhance(brightness)

    with st.spinner('Waiting for image display...'):
        original_image = get_image(uploaded_file)
        resized_image = original_image.resize((screen_width // 2, int(original_image.height * (screen_width // 2) / original_image.width)))

        with st.expander("Rotate and adjust brightness"):
            if not is_mobile:
                col1, col2 = st.columns([1.5, 1])
                with col1:  
                    st.session_state.brightness = st.slider("Adjust Brightness", min_value=0.2, max_value=2.0, value=1.0, step=0.1)
            else:
                st.session_state.brightness = st.slider("Adjust Brightness", min_value=0.2, max_value=2.0, value=1.0, step=0.1)

            # Add buttons to rotate the image next to each other
            col1, col2 = st.columns([1, 1])
            with col1:
                if st.button("Rotate Left"):
                    rotate_image(90)
            with col2:
                if st.button("Rotate Right"):
                    rotate_image(-90)

        # Apply the rotation angle from session state
        rotated_image = resized_image.rotate(st.session_state.rotation_angle, expand=True)
        original_image = original_image.rotate(st.session_state.rotation_angle, expand=True)

        # Apply the brightness adjustment
        adjusted_image = adjust_brightness(rotated_image, st.session_state.brightness)
        original_image = adjust_brightness(original_image, st.session_state.brightness)

        if not is_mobile:
            cropped_image = crop_image(adjusted_image, original_image)
        else:
            st.image(adjusted_image, caption="Image", use_column_width=False, width=int(4 / 5 * screen_width))
            cropped_image = original_image

    return cropped_image

# Function to crop the image
def crop_image(resized_image, original_image):
    """
    Crops the resized image based on user input.
    
    Parameters:
    - resized_image (PIL.Image): The resized image.
    - original_image (PIL.Image): The original image.
    
    Returns:
    - PIL.Image: The cropped image.
    """
    marge = 10
    cropped_box = st_cropper(
        resized_image,
        realtime_update=True,
        box_color='#0000FF',
        return_type='box',
        should_resize_image=False,
        default_coords=(marge, resized_image.width - marge, marge, resized_image.height - marge)
    )
    scale_x = original_image.width / resized_image.width
    scale_y = original_image.height / resized_image.height
    x0, y0, x1, y1 = int(cropped_box['left'] * scale_x), int(cropped_box['top'] * scale_y), int((cropped_box['left'] + cropped_box['width']) * scale_x), int((cropped_box['top'] + cropped_box['height']) * scale_y)
    cropped_image = original_image.crop((x0, y0, x1, y1))
    return cropped_image

# Function to get the score threshold for prediction
def get_score_threshold(is_mobile):
    """
    Displays a slider to set the score threshold for prediction.
    
    Parameters:
    - is_mobile (bool): Flag indicating if the device is mobile.
    """
    col1, col2 = st.columns(2)
    with col1:
        st.session_state.score_threshold = st.slider("Set score threshold for prediction", min_value=0.0, max_value=1.0, value=0.5, step=0.05)

def launch_prediction(cropped_image, score_threshold, is_mobile, screen_width):
    """
    Launches the prediction process on the cropped image and displays balloons upon completion.

    Parameters:
    - cropped_image (PIL.Image): The cropped image to be processed.
    - score_threshold (float): The score threshold for predictions.
    - is_mobile (bool): Flag indicating if the device is mobile.
    - screen_width (int): The width of the screen.

    Returns:
    - PIL.Image: The image after performing inference.
    """
    st.session_state.crop_image = cropped_image
    with st.spinner('Processing...'):
        image, _, _ = perform_inference(
            st.session_state.model_object, st.session_state.model_arrow, st.session_state.crop_image,
            score_threshold, is_mobile, screen_width, iou_threshold=0.3, distance_treshold=30, percentage_text_dist_thresh=0.5
        )
        st.balloons()    
        return image

def modify_results(percentage_text_dist_thresh=0.5):
    """
    Allows the user to modify the results using Modify prediction.

    Parameters:
    - percentage_text_dist_thresh (float): Threshold for mapping text to predictions based on percentage distance.

    Returns:
    - bool: True if changes are detected and modifications are made, otherwise False.
    """
    with st.expander("Modify prediction"):
        label_list = list(object_dict.values())
        if st.session_state.prediction['labels'][-1] == 6:
            bboxes = [[int(coord) for coord in box] for box in st.session_state.prediction['boxes'][:-1]]
            labels = [int(label) for label in st.session_state.prediction['labels'][:-1]]
        else:
            bboxes = [[int(coord) for coord in box] for box in st.session_state.prediction['boxes']]
            labels = [int(label) for label in st.session_state.prediction['labels']]
        for i in range(len(bboxes)):
            bboxes[i][2] = bboxes[i][2] - bboxes[i][0]
            bboxes[i][3] = bboxes[i][3] - bboxes[i][1]

        arrow_bboxes = st.session_state.arrow_pred['boxes']
        arrow_labels = st.session_state.arrow_pred['labels']
        arrow_score = st.session_state.arrow_pred['scores']
        arrow_keypoints = st.session_state.arrow_pred['keypoints']

        # Filter boxes and labels where label is less than 12 to only have objects
        object_bboxes = []
        object_labels = []     
        for i in range(len(bboxes)):
            if labels[i] <= 12:
                object_bboxes.append(bboxes[i])
                object_labels.append(labels[i])

        uploaded_image = prepare_image(st.session_state.crop_image, new_size=(1333, 1333), pad=False)

        new_data = detection(
            image=uploaded_image, bboxes=object_bboxes, labels=object_labels, 
            label_list=label_list, line_width=3, width=2000, use_space=False
        )

        if new_data is not None:
            changes = False
            new_lab = np.array([data['label_id'] for data in new_data])  
            # Convert back to original format
            bboxes = np.array([data['bbox'] for data in new_data])
            object_bboxes = np.array(object_bboxes)

            # Order bboxes and labels
            order = np.argsort(bboxes[:, 0])
            bboxes = bboxes[order]
            new_lab = new_lab[order]

            order2 = np.argsort(object_bboxes[:, 0])
            object_bboxes = object_bboxes[order2]
            object_labels = np.array(object_labels)[order2]

            # Make all values of bboxes integers
            bboxes = bboxes.astype(int)

            tolerance = 1

            object_labels = np.array(object_labels)

            if len(object_bboxes) == len(bboxes):
                # Calculate absolute differences
                abs_diff = np.abs(object_bboxes - bboxes)
                
                for i in range(len(object_bboxes)):
                    for j in range(len(object_bboxes[i])):
                        if abs_diff[i][j] > tolerance:
                            changes = True
                            break

                # Check if labels are the same
                if not np.array_equal(object_labels, new_lab):
                    changes = True
            else:   
                changes = True                

            for i in range(len(bboxes)):
                bboxes[i][2] = bboxes[i][2] + bboxes[i][0]
                bboxes[i][3] = bboxes[i][3] + bboxes[i][1]

            object_scores = []
            object_keypoints = []
            for i in range(len(new_data)):
                object_scores.append(1.0)
                object_keypoints.append([[0, 0, 0], [0, 0, 0]])

            new_bbox = np.concatenate((bboxes, arrow_bboxes))
            new_lab = np.concatenate((new_lab, arrow_labels))
            new_scores = np.concatenate((object_scores, arrow_score))
            new_keypoints = np.concatenate((object_keypoints, arrow_keypoints))

            boxes, labels, scores, keypoints, bpmn_id, flow_links, best_points, pool_dict = develop_prediction(new_bbox, new_lab, new_scores, new_keypoints, class_dict)

            st.session_state.prediction = generate_data(st.session_state.prediction['image'], boxes, labels, scores, keypoints, bpmn_id, flow_links, best_points, pool_dict)
            st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=percentage_text_dist_thresh)

            if changes:
                changes = False
                st.rerun()

            return True

def display_bpmn_modeler(is_mobile, screen_width):
    """
    Displays the BPMN modeler with the current prediction and text mapping.

    Parameters:
    - is_mobile (bool): Flag indicating if the device is mobile.
    - screen_width (int): The width of the screen.
    """
    with st.spinner('Waiting for BPMN modeler...'):
        st.session_state.bpmn_xml = create_XML(
            st.session_state.prediction.copy(), st.session_state.text_mapping, 
            st.session_state.size_scale, st.session_state.scale
        )

        st.session_state.vizi_file = create_wizard_file(st.session_state.prediction.copy(), st.session_state.text_mapping)
        
        display_bpmn_xml(st.session_state.bpmn_xml, st.session_state.vizi_file, is_mobile=is_mobile, screen_width=int(4/5 * screen_width))

def find_best_scale(pred, size_elements):
    """
    Finds the best scale for the elements in the prediction.

    Parameters:
    - pred (dict): The prediction data.
    - size_elements (dict): The size elements dictionary.

    Returns:
    - float: The best scale for the elements.
    """
    boxes = pred['boxes']
    labels = pred['labels']

    # Find average size of the tasks in pred
    avg_size = 0
    count = 0
    for i in range(len(boxes)):
        if class_dict[labels[i]] == 'task':
            avg_size += (boxes[i][2] - boxes[i][0]) * (boxes[i][3] - boxes[i][1])
            count += 1

    if count == 0:
        raise ValueError("No tasks found in the provided prediction.")

    avg_size /= count

    # Get the size of a task element from size_elements dictionary
    task_size = size_elements['task']
    task_area = task_size[0] * task_size[1]

    # Find the best scale
    best_scale = (avg_size / task_area) ** 0.5

    if best_scale < 0.5:
        best_scale = 0.5
    elif best_scale > 1:
        best_scale = 1

    return best_scale

def modeler_options(is_mobile):
    """
    Displays options for the BPMN modeler.

    Parameters:
    - is_mobile (bool): Flag indicating if the device is mobile.
    """
    if not is_mobile:
        with st.expander("Options for BPMN modeler"):
            col1, col2 = st.columns(2)
            with col1:
                st.session_state.best_scale = find_best_scale(st.session_state.prediction, get_size_elements()) 
                print(f"Best scale: {st.session_state.best_scale}")
                st.session_state.scale = st.slider("Set distance scale for XML file", min_value=0.1, max_value=2.0, value=1/st.session_state.best_scale, step=0.1) 
                st.session_state.size_scale = st.slider("Set size object scale for XML file", min_value=0.5, max_value=2.0, value=1.0, step=0.1) 
    else:
        st.session_state.scale = 1.0
        st.session_state.size_scale = 1.0