File size: 7,964 Bytes
e108fc3
 
 
 
 
 
 
 
 
 
 
 
 
00a4c90
e108fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00a4c90
e108fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00a4c90
e108fc3
00a4c90
e108fc3
 
 
 
 
 
 
00a4c90
e108fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00a4c90
 
e108fc3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import streamlit as st
from PIL import Image, ImageEnhance
import torch
from torchvision.transforms import functional as F
import gc
import psutil
import copy
import xml.etree.ElementTree as ET
import numpy as np
from pathlib import Path
import gdown

from modules.OCR import text_prediction, filter_text, mapping_text
from modules.utils import class_dict, arrow_dict, object_dict
from modules.display import draw_stream
from modules.eval import full_prediction
from modules.train import get_faster_rcnn_model, get_arrow_model
from streamlit_image_comparison import image_comparison



def get_memory_usage():
    process = psutil.Process()
    mem_info = process.memory_info()
    return mem_info.rss / (1024 ** 2)  # Return memory usage in MB

def clear_memory():
    st.session_state.clear()
    gc.collect()

def sidebar():# Sidebar content
    st.sidebar.header("This BPMN AI model recognition is proposed by: \n ELCA in collaboration with EPFL.")
    st.sidebar.subheader("Instructions:")
    st.sidebar.text("1. Upload you image")
    st.sidebar.text("2. Crop the image \n  (try to put the BPMN diagram \n   in the center of the image)")
    st.sidebar.text("3. Set the score threshold \n   for prediction (default is 0.5)")
    st.sidebar.text("4. Click on 'Launch Prediction'")
    st.sidebar.text("5. You can now see the annotation \n   and the BPMN XML result")
    st.sidebar.text("6. You can change the scale for \n   the XML file (default is 1.0)")
    st.sidebar.text("7. You can modify and download \n   the result in right format")

    st.sidebar.subheader("If there is an error, try to:")
    st.sidebar.text("1. Change the score threshold")
    st.sidebar.text("2. Re-crop the image by placing\n   the BPMN diagram in the center\n   of the image")
    st.sidebar.text("3. Re-Launch the prediction")

    st.sidebar.subheader("You can close this sidebar")


# Function to read XML content from a file
def read_xml_file(filepath):
    """ Read XML content from a file """
    with open(filepath, 'r', encoding='utf-8') as file:
        return file.read()



# Function to load the models only once and use session state to keep track of it
def load_models():
    with st.spinner('Loading model...'):     
        model_object = get_faster_rcnn_model(len(object_dict))
        model_arrow = get_arrow_model(len(arrow_dict),2)

        url_arrow = 'https://drive.google.com/uc?id=1vv1X_r_lZ8gnzMAIKxcVEb_T_Qb-NkyA'
        url_object = 'https://drive.google.com/uc?id=1b1bqogxqdPS-SnvaOfWJGV1I1qOrTKh5'

        # Define paths to save models
        output_arrow = 'model_arrow.pth'
        output_object = 'model_object.pth'

        # Download models using gdown
        if not Path(output_arrow).exists():
            # Download models using gdown
            gdown.download(url_arrow, output_arrow, quiet=False)
        else:
            print('Model arrow downloaded from local')
        if not Path(output_object).exists():
            gdown.download(url_object, output_object, quiet=False)
        else:
            print('Model object downloaded from local')

        # Load models
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        model_arrow.load_state_dict(torch.load(output_arrow, map_location=device))
        model_object.load_state_dict(torch.load(output_object, map_location=device))

        st.session_state.model_loaded = True
        st.session_state.model_arrow = model_arrow
        st.session_state.model_object = model_object

        return model_object, model_arrow

# Function to prepare the image for processing
def prepare_image(image, pad=True, new_size=(1333, 1333)):
    original_size = image.size
    # Calculate scale to fit the new size while maintaining aspect ratio
    scale = min(new_size[0] / original_size[0], new_size[1] / original_size[1])
    new_scaled_size = (int(original_size[0] * scale), int(original_size[1] * scale))
    # Resize image to new scaled size
    image = F.resize(image, (new_scaled_size[1], new_scaled_size[0]))

    if pad:
        enhancer = ImageEnhance.Brightness(image)
        image = enhancer.enhance(1.0)  # Adjust the brightness if necessary
        # Pad the resized image to make it exactly the desired size
        padding = [0, 0, new_size[0] - new_scaled_size[0], new_size[1] - new_scaled_size[1]]
        image = F.pad(image, padding, fill=200, padding_mode='edge')

    return image

# Function to display various options for image annotation
def display_options(image, score_threshold, is_mobile, screen_width):
    col1, col2, col3, col4, col5 = st.columns(5)
    with col1:
        write_class = st.toggle("Write Class", value=True)
        draw_keypoints = st.toggle("Draw Keypoints", value=True)
        draw_boxes = st.toggle("Draw Boxes", value=True)
    with col2:
        draw_text = st.toggle("Draw Text", value=False)
        write_text = st.toggle("Write Text", value=False)
        draw_links = st.toggle("Draw Links", value=False)
    with col3:
        write_score = st.toggle("Write Score", value=True)
        write_idx = st.toggle("Write Index", value=False)
    with col4:
        # Define options for the dropdown menu
        dropdown_options = [list(class_dict.values())[i] for i in range(len(class_dict))]
        dropdown_options[0] = 'all'
        selected_option = st.selectbox("Show class", dropdown_options)

    # Draw the annotated image with selected options
    annotated_image = draw_stream(
        np.array(image), prediction=st.session_state.prediction, text_predictions=st.session_state.text_pred,
        draw_keypoints=draw_keypoints, draw_boxes=draw_boxes, draw_links=draw_links, draw_twins=False, draw_grouped_text=draw_text,
        write_class=write_class, write_text=write_text, keypoints_correction=True, write_idx=write_idx, only_show=selected_option,
        score_threshold=score_threshold, write_score=write_score, resize=True, return_image=True, axis=True
    )

    if is_mobile is True:
        width = screen_width
    else:
        width = screen_width//2

    # Display the original and annotated images side by side
    image_comparison(
        img1=annotated_image,
        img2=image,
        label1="Annotated Image",
        label2="Original Image",
        starting_position=99,
        width=width,
    )

# Function to perform inference on the uploaded image using the loaded models
def perform_inference(model_object, model_arrow, image, score_threshold, is_mobile, screen_width, iou_threshold=0.5, distance_treshold=30, percentage_text_dist_thresh=0.5):
    uploaded_image = prepare_image(image, pad=False)
              
    img_tensor = F.to_tensor(prepare_image(image.convert('RGB')))

    # Display original image
    if 'image_placeholder' not in st.session_state:
        image_placeholder = st.empty()  # Create an empty placeholder
    if is_mobile is False:
        width = screen_width
        if is_mobile is False:
            width = screen_width//2
        image_placeholder.image(uploaded_image, caption='Original Image', width=width)

    # Prediction
    _, st.session_state.prediction = full_prediction(model_object, model_arrow, img_tensor, score_threshold=score_threshold, iou_threshold=iou_threshold, distance_treshold=distance_treshold)

    # Perform OCR on the uploaded image
    ocr_results = text_prediction(uploaded_image)

    # Filter and map OCR results to prediction results
    st.session_state.text_pred = filter_text(ocr_results, threshold=0.6)
    st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=percentage_text_dist_thresh)
                
    # Remove the original image display
    image_placeholder.empty()

    # Force garbage collection
    gc.collect()

    return image, st.session_state.prediction, st.session_state.text_mapping

@st.cache_data
def get_image(uploaded_file):
    return Image.open(uploaded_file).convert('RGB')