Spaces:
Running
Running
File size: 7,964 Bytes
e108fc3 00a4c90 e108fc3 00a4c90 e108fc3 00a4c90 e108fc3 00a4c90 e108fc3 00a4c90 e108fc3 00a4c90 e108fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import streamlit as st
from PIL import Image, ImageEnhance
import torch
from torchvision.transforms import functional as F
import gc
import psutil
import copy
import xml.etree.ElementTree as ET
import numpy as np
from pathlib import Path
import gdown
from modules.OCR import text_prediction, filter_text, mapping_text
from modules.utils import class_dict, arrow_dict, object_dict
from modules.display import draw_stream
from modules.eval import full_prediction
from modules.train import get_faster_rcnn_model, get_arrow_model
from streamlit_image_comparison import image_comparison
def get_memory_usage():
process = psutil.Process()
mem_info = process.memory_info()
return mem_info.rss / (1024 ** 2) # Return memory usage in MB
def clear_memory():
st.session_state.clear()
gc.collect()
def sidebar():# Sidebar content
st.sidebar.header("This BPMN AI model recognition is proposed by: \n ELCA in collaboration with EPFL.")
st.sidebar.subheader("Instructions:")
st.sidebar.text("1. Upload you image")
st.sidebar.text("2. Crop the image \n (try to put the BPMN diagram \n in the center of the image)")
st.sidebar.text("3. Set the score threshold \n for prediction (default is 0.5)")
st.sidebar.text("4. Click on 'Launch Prediction'")
st.sidebar.text("5. You can now see the annotation \n and the BPMN XML result")
st.sidebar.text("6. You can change the scale for \n the XML file (default is 1.0)")
st.sidebar.text("7. You can modify and download \n the result in right format")
st.sidebar.subheader("If there is an error, try to:")
st.sidebar.text("1. Change the score threshold")
st.sidebar.text("2. Re-crop the image by placing\n the BPMN diagram in the center\n of the image")
st.sidebar.text("3. Re-Launch the prediction")
st.sidebar.subheader("You can close this sidebar")
# Function to read XML content from a file
def read_xml_file(filepath):
""" Read XML content from a file """
with open(filepath, 'r', encoding='utf-8') as file:
return file.read()
# Function to load the models only once and use session state to keep track of it
def load_models():
with st.spinner('Loading model...'):
model_object = get_faster_rcnn_model(len(object_dict))
model_arrow = get_arrow_model(len(arrow_dict),2)
url_arrow = 'https://drive.google.com/uc?id=1vv1X_r_lZ8gnzMAIKxcVEb_T_Qb-NkyA'
url_object = 'https://drive.google.com/uc?id=1b1bqogxqdPS-SnvaOfWJGV1I1qOrTKh5'
# Define paths to save models
output_arrow = 'model_arrow.pth'
output_object = 'model_object.pth'
# Download models using gdown
if not Path(output_arrow).exists():
# Download models using gdown
gdown.download(url_arrow, output_arrow, quiet=False)
else:
print('Model arrow downloaded from local')
if not Path(output_object).exists():
gdown.download(url_object, output_object, quiet=False)
else:
print('Model object downloaded from local')
# Load models
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_arrow.load_state_dict(torch.load(output_arrow, map_location=device))
model_object.load_state_dict(torch.load(output_object, map_location=device))
st.session_state.model_loaded = True
st.session_state.model_arrow = model_arrow
st.session_state.model_object = model_object
return model_object, model_arrow
# Function to prepare the image for processing
def prepare_image(image, pad=True, new_size=(1333, 1333)):
original_size = image.size
# Calculate scale to fit the new size while maintaining aspect ratio
scale = min(new_size[0] / original_size[0], new_size[1] / original_size[1])
new_scaled_size = (int(original_size[0] * scale), int(original_size[1] * scale))
# Resize image to new scaled size
image = F.resize(image, (new_scaled_size[1], new_scaled_size[0]))
if pad:
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(1.0) # Adjust the brightness if necessary
# Pad the resized image to make it exactly the desired size
padding = [0, 0, new_size[0] - new_scaled_size[0], new_size[1] - new_scaled_size[1]]
image = F.pad(image, padding, fill=200, padding_mode='edge')
return image
# Function to display various options for image annotation
def display_options(image, score_threshold, is_mobile, screen_width):
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
write_class = st.toggle("Write Class", value=True)
draw_keypoints = st.toggle("Draw Keypoints", value=True)
draw_boxes = st.toggle("Draw Boxes", value=True)
with col2:
draw_text = st.toggle("Draw Text", value=False)
write_text = st.toggle("Write Text", value=False)
draw_links = st.toggle("Draw Links", value=False)
with col3:
write_score = st.toggle("Write Score", value=True)
write_idx = st.toggle("Write Index", value=False)
with col4:
# Define options for the dropdown menu
dropdown_options = [list(class_dict.values())[i] for i in range(len(class_dict))]
dropdown_options[0] = 'all'
selected_option = st.selectbox("Show class", dropdown_options)
# Draw the annotated image with selected options
annotated_image = draw_stream(
np.array(image), prediction=st.session_state.prediction, text_predictions=st.session_state.text_pred,
draw_keypoints=draw_keypoints, draw_boxes=draw_boxes, draw_links=draw_links, draw_twins=False, draw_grouped_text=draw_text,
write_class=write_class, write_text=write_text, keypoints_correction=True, write_idx=write_idx, only_show=selected_option,
score_threshold=score_threshold, write_score=write_score, resize=True, return_image=True, axis=True
)
if is_mobile is True:
width = screen_width
else:
width = screen_width//2
# Display the original and annotated images side by side
image_comparison(
img1=annotated_image,
img2=image,
label1="Annotated Image",
label2="Original Image",
starting_position=99,
width=width,
)
# Function to perform inference on the uploaded image using the loaded models
def perform_inference(model_object, model_arrow, image, score_threshold, is_mobile, screen_width, iou_threshold=0.5, distance_treshold=30, percentage_text_dist_thresh=0.5):
uploaded_image = prepare_image(image, pad=False)
img_tensor = F.to_tensor(prepare_image(image.convert('RGB')))
# Display original image
if 'image_placeholder' not in st.session_state:
image_placeholder = st.empty() # Create an empty placeholder
if is_mobile is False:
width = screen_width
if is_mobile is False:
width = screen_width//2
image_placeholder.image(uploaded_image, caption='Original Image', width=width)
# Prediction
_, st.session_state.prediction = full_prediction(model_object, model_arrow, img_tensor, score_threshold=score_threshold, iou_threshold=iou_threshold, distance_treshold=distance_treshold)
# Perform OCR on the uploaded image
ocr_results = text_prediction(uploaded_image)
# Filter and map OCR results to prediction results
st.session_state.text_pred = filter_text(ocr_results, threshold=0.6)
st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=percentage_text_dist_thresh)
# Remove the original image display
image_placeholder.empty()
# Force garbage collection
gc.collect()
return image, st.session_state.prediction, st.session_state.text_mapping
@st.cache_data
def get_image(uploaded_file):
return Image.open(uploaded_file).convert('RGB') |