Spaces:
Running
Running
File size: 8,904 Bytes
615e9f1 b76c717 615e9f1 2d1db93 bb42123 00a4c90 615e9f1 00a4c90 7029382 00a4c90 e508e94 00a4c90 74f41b4 9ef60c2 74f41b4 9ef60c2 e508e94 00a4c90 7029382 00a4c90 7029382 00a4c90 e508e94 00a4c90 615e9f1 00a4c90 615e9f1 00a4c90 9134c9f 00a4c90 9134c9f 615e9f1 00a4c90 74f41b4 00a4c90 2d1db93 053df76 00a4c90 615e9f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import streamlit as st
from torchvision.transforms import functional as F
import gc
import numpy as np
from modules.htlm_webpage import display_bpmn_xml
from streamlit_cropper import st_cropper
from streamlit_image_select import image_select
from streamlit_js_eval import streamlit_js_eval
from streamlit_drawable_canvas import st_canvas
from modules.streamlit_utils import *
from glob import glob
from streamlit_image_annotation import detection
from modules.toXML import create_XML
def configure_page():
st.set_page_config(layout="wide")
screen_width = streamlit_js_eval(js_expressions='screen.width', want_output=True, key='SCR')
is_mobile = screen_width is not None and screen_width < 800
return is_mobile, screen_width
def display_banner(is_mobile):
if is_mobile:
st.image("./images/banner_mobile.png", use_column_width=True)
else:
st.image("./images/banner_desktop.png", use_column_width=True)
def display_title(is_mobile):
title = "Welcome on the BPMN AI model recognition app"
if is_mobile:
title = "Welcome on the mobile version of BPMN AI model recognition app"
st.title(title)
def display_sidebar():
sidebar()
def initialize_session_state():
if 'pool_bboxes' not in st.session_state:
st.session_state.pool_bboxes = []
if 'model_object' not in st.session_state or 'model_arrow' not in st.session_state:
clear_memory()
load_models()
def load_example_image():
with st.expander("Use example images"):
img_selected = image_select(
"If you have no image and just want to test the demo, click on one of these images",
["./images/none.jpg", "./images/example1.jpg", "./images/example2.jpg", "./images/example3.jpg", "./images/example4.jpg"],
captions=["None", "Example 1", "Example 2", "Example 3", "Example 4"],
index=0,
use_container_width=False,
return_value="original"
)
return img_selected
def load_user_image(img_selected, is_mobile):
if img_selected == './images/none.jpg':
img_selected = None
if img_selected is not None:
uploaded_file = img_selected
else:
if is_mobile:
uploaded_file = st.file_uploader("Choose an image from my computer...", type=["jpg", "jpeg", "png"], accept_multiple_files=False)
else:
col1, col2 = st.columns(2)
with col1:
uploaded_file = st.file_uploader("Choose an image from my computer...", type=["jpg", "jpeg", "png"])
return uploaded_file
def display_image(uploaded_file, screen_width, is_mobile):
with st.spinner('Waiting for image display...'):
original_image = get_image(uploaded_file)
resized_image = original_image.resize((screen_width // 2, int(original_image.height * (screen_width // 2) / original_image.width)))
if not is_mobile:
cropped_image = crop_image(resized_image, original_image)
else:
st.image(resized_image, caption="Image", use_column_width=False, width=int(4/5 * screen_width))
cropped_image = original_image
return cropped_image
def crop_image(resized_image, original_image):
marge = 10
cropped_box = st_cropper(
resized_image,
realtime_update=True,
box_color='#0000FF',
return_type='box',
should_resize_image=False,
default_coords=(marge, resized_image.width - marge, marge, resized_image.height - marge)
)
scale_x = original_image.width / resized_image.width
scale_y = original_image.height / resized_image.height
x0, y0, x1, y1 = int(cropped_box['left'] * scale_x), int(cropped_box['top'] * scale_y), int((cropped_box['left'] + cropped_box['width']) * scale_x), int((cropped_box['top'] + cropped_box['height']) * scale_y)
cropped_image = original_image.crop((x0, y0, x1, y1))
return cropped_image
def get_score_threshold(is_mobile):
col1, col2 = st.columns(2)
with col1:
st.session_state.score_threshold = st.slider("Set score threshold for prediction", min_value=0.0, max_value=1.0, value=0.5 if not is_mobile else 0.6, step=0.05)
def launch_prediction(cropped_image, score_threshold, is_mobile, screen_width):
st.session_state.crop_image = cropped_image
with st.spinner('Processing...'):
perform_inference(
st.session_state.model_object, st.session_state.model_arrow, st.session_state.crop_image,
score_threshold, is_mobile, screen_width, iou_threshold=0.3, distance_treshold=30, percentage_text_dist_thresh=0.5
)
st.balloons()
from modules.eval import develop_prediction, generate_data
from modules.utils import class_dict
def modify_results(percentage_text_dist_thresh=0.5):
with st.expander("Method and Style modification"):
label_list = list(class_dict.values())
bboxes = [[int(coord) for coord in box] for box in st.session_state.prediction['boxes']]
for i in range(len(bboxes)):
bboxes[i][2] = bboxes[i][2] - bboxes[i][0]
bboxes[i][3] = bboxes[i][3] - bboxes[i][1]
labels = [int(label) for label in st.session_state.prediction['labels']]
uploaded_image = prepare_image(st.session_state.crop_image, new_size=(1333, 1333), pad=False)
scale = 2000 / uploaded_image.size[0]
new_labels = detection(
image=uploaded_image, bboxes=bboxes, labels=labels,
label_list=label_list, line_width=3, width=2000, use_space=False
)
if new_labels is not None:
new_lab = np.array([label['label_id'] for label in new_labels])
# Convert back to original format
bboxes = np.array([label['bbox'] for label in new_labels])
for i in range(len(bboxes)):
bboxes[i][2] = bboxes[i][2] + bboxes[i][0]
bboxes[i][3] = bboxes[i][3] + bboxes[i][1]
scores = st.session_state.prediction['scores']
keypoints = st.session_state.prediction['keypoints']
#print('Old prediction:', st.session_state.prediction['keypoints'])
boxes, labels, scores, keypoints, flow_links, best_points, pool_dict = develop_prediction(bboxes, new_lab, scores, keypoints, class_dict, correction=False)
st.session_state.prediction = generate_data(st.session_state.prediction['image'], boxes, labels, scores, keypoints, flow_links, best_points, pool_dict, class_dict)
st.session_state.text_mapping = mapping_text(st.session_state.prediction, st.session_state.text_pred, print_sentences=False, percentage_thresh=percentage_text_dist_thresh)
#print('New prediction:', st.session_state.prediction['keypoints'])
def display_bpmn_modeler(is_mobile, screen_width):
with st.spinner('Waiting for BPMN modeler...'):
st.session_state.bpmn_xml = create_XML(
st.session_state.prediction.copy(), st.session_state.text_mapping,
st.session_state.size_scale, st.session_state.scale
)
display_bpmn_xml(st.session_state.bpmn_xml, is_mobile=is_mobile, screen_width=int(4/5 * screen_width))
def modeler_options(is_mobile):
col1, col2 = st.columns(2)
with col1:
st.session_state.scale = st.slider("Set distance scale for XML file", min_value=0.1, max_value=2.0, value=1.0, step=0.1) if not is_mobile else 1.0
st.session_state.size_scale = st.slider("Set size object scale for XML file", min_value=0.5, max_value=2.0, value=1.0, step=0.1) if not is_mobile else 1.0
def main():
is_mobile, screen_width = configure_page()
display_banner(is_mobile)
display_title(is_mobile)
display_sidebar()
initialize_session_state()
cropped_image = None
img_selected = load_example_image()
uploaded_file = load_user_image(img_selected, is_mobile)
if uploaded_file is not None:
cropped_image = display_image(uploaded_file, screen_width, is_mobile)
if cropped_image is not None:
get_score_threshold(is_mobile)
if st.button("Launch Prediction"):
launch_prediction(cropped_image, st.session_state.score_threshold, is_mobile, screen_width)
st.rerun()
if 'prediction' in st.session_state and uploaded_file:
if st.button("π Refresh image"):
st.rerun()
with st.expander("Show result"):
with st.spinner('Waiting for result display...'):
display_options(st.session_state.crop_image, st.session_state.score_threshold, is_mobile, int(5/6 * screen_width))
#if not is_mobile:
#modify_results()
with st.expander("Options for BPMN modeler"):
modeler_options(is_mobile)
display_bpmn_modeler(is_mobile, screen_width)
gc.collect()
if __name__ == "__main__":
print('Starting the app...')
main()
|