from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load the BART tokenizer and model tokenizer = AutoTokenizer.from_pretrained("EE21/BART-ToSSimplify") model = AutoModelForSeq2SeqLM.from_pretrained("EE21/BART-ToSSimplify") # Define a function to summarize text with minimum length constraint def summarize_with_bart(input_text, max_summary_tokens=200, min_summary_tokens=100, do_sample=False): # Tokenize the input text and return input_ids as PyTorch tensors inputs = tokenizer(input_text, return_tensors="pt").input_ids # Generate the summary with minimum and maximum length constraints outputs = model.generate(inputs, max_length=max_summary_tokens, min_length=min_summary_tokens, do_sample=do_sample) # Decode the generated token IDs back into text summary = tokenizer.decode(outputs[0], skip_special_tokens=True) return summary