Updated sorting of performance page
Browse files- components.py +49 -14
components.py
CHANGED
@@ -54,13 +54,15 @@ def model_selector(models: list[str]) -> set[str]:
|
|
54 |
|
55 |
|
56 |
def overview_view(data):
|
57 |
-
st.markdown(
|
|
|
58 |
[EnFoBench](https://github.com/attila-balint-kul/energy-forecast-benchmark-toolkit)
|
59 |
is a community driven benchmarking framework for energy forecasting models.
|
60 |
|
61 |
This dashboard presents the results of the electricity demand forecasting usecase. All models were cross-validated
|
62 |
on **365 days** of day ahead forecasting horizon *(10AM until midnight of the next day)*.
|
63 |
-
"""
|
|
|
64 |
|
65 |
st.divider()
|
66 |
st.markdown("## Leaderboard")
|
@@ -69,20 +71,34 @@ def overview_view(data):
|
|
69 |
|
70 |
left, middle, right = st.columns(3)
|
71 |
with left:
|
72 |
-
best_models_mae =
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
st.plotly_chart(fig, use_container_width=True)
|
76 |
|
77 |
with middle:
|
78 |
-
best_models_mae =
|
79 |
-
|
|
|
|
|
|
|
|
|
80 |
fig.update_layout(title="Top 10 models by RMSE", xaxis_title="", yaxis_title="")
|
81 |
st.plotly_chart(fig, use_container_width=True)
|
82 |
|
83 |
with right:
|
84 |
-
best_models_mae =
|
85 |
-
|
|
|
|
|
|
|
|
|
86 |
fig.update_layout(title="Top 10 models by rMAE", xaxis_title="", yaxis_title="")
|
87 |
st.plotly_chart(fig, use_container_width=True)
|
88 |
|
@@ -222,8 +238,18 @@ def performance_view(data: pd.DataFrame, models_to_plot: set[str]):
|
|
222 |
"Aggregation", ["min", "mean", "median", "max", "std"], index=1
|
223 |
)
|
224 |
st.markdown(f"#### {aggregation.capitalize()} {metric} per building")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
fig = px.box(
|
226 |
-
data_to_plot,
|
227 |
x=f"{metric}.{aggregation}",
|
228 |
y="model",
|
229 |
color="model",
|
@@ -283,7 +309,9 @@ def performance_view(data: pd.DataFrame, models_to_plot: set[str]):
|
|
283 |
key="table_aggregation",
|
284 |
)
|
285 |
|
286 |
-
|
|
|
|
|
287 |
[
|
288 |
f"{metric}.min",
|
289 |
f"{metric}.mean",
|
@@ -302,15 +330,22 @@ def performance_view(data: pd.DataFrame, models_to_plot: set[str]):
|
|
302 |
return styler
|
303 |
|
304 |
st.markdown(f"#### {aggregation.capitalize()} {metric} stats per model")
|
305 |
-
styled_table =
|
306 |
st.dataframe(styled_table, use_container_width=True)
|
307 |
|
308 |
-
|
309 |
data_to_plot.groupby(["model", "unique_id"])
|
310 |
.apply(aggregation, numeric_only=True)
|
311 |
.reset_index()
|
312 |
.pivot(index="model", columns="unique_id", values=f"{metric}.{aggregation}")
|
313 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
def custom_table(styler):
|
316 |
styler.background_gradient(cmap="seismic", axis=None)
|
@@ -321,7 +356,7 @@ def performance_view(data: pd.DataFrame, models_to_plot: set[str]):
|
|
321 |
return styler
|
322 |
|
323 |
st.markdown(f"#### {aggregation.capitalize()} {metric} stats per building")
|
324 |
-
styled_table =
|
325 |
st.dataframe(styled_table, use_container_width=True)
|
326 |
|
327 |
|
|
|
54 |
|
55 |
|
56 |
def overview_view(data):
|
57 |
+
st.markdown(
|
58 |
+
"""
|
59 |
[EnFoBench](https://github.com/attila-balint-kul/energy-forecast-benchmark-toolkit)
|
60 |
is a community driven benchmarking framework for energy forecasting models.
|
61 |
|
62 |
This dashboard presents the results of the electricity demand forecasting usecase. All models were cross-validated
|
63 |
on **365 days** of day ahead forecasting horizon *(10AM until midnight of the next day)*.
|
64 |
+
"""
|
65 |
+
)
|
66 |
|
67 |
st.divider()
|
68 |
st.markdown("## Leaderboard")
|
|
|
71 |
|
72 |
left, middle, right = st.columns(3)
|
73 |
with left:
|
74 |
+
best_models_mae = (
|
75 |
+
leaderboard.sort_values("MAE.mean", ascending=False)
|
76 |
+
.head(10)
|
77 |
+
.sort_values("MAE.mean")
|
78 |
+
)
|
79 |
+
fig = px.bar(best_models_mae, x="MAE.mean", y=best_models_mae.index)
|
80 |
+
fig.update_layout(
|
81 |
+
title="Top 10 models by MAE", xaxis_title="", yaxis_title="Model"
|
82 |
+
)
|
83 |
st.plotly_chart(fig, use_container_width=True)
|
84 |
|
85 |
with middle:
|
86 |
+
best_models_mae = (
|
87 |
+
leaderboard.sort_values("RMSE.mean", ascending=False)
|
88 |
+
.head(10)
|
89 |
+
.sort_values("RMSE.mean")
|
90 |
+
)
|
91 |
+
fig = px.bar(best_models_mae, x="RMSE.mean", y=best_models_mae.index)
|
92 |
fig.update_layout(title="Top 10 models by RMSE", xaxis_title="", yaxis_title="")
|
93 |
st.plotly_chart(fig, use_container_width=True)
|
94 |
|
95 |
with right:
|
96 |
+
best_models_mae = (
|
97 |
+
leaderboard.sort_values("rMAE.mean", ascending=False)
|
98 |
+
.head(10)
|
99 |
+
.sort_values("rMAE.mean")
|
100 |
+
)
|
101 |
+
fig = px.bar(best_models_mae, x="rMAE.mean", y=best_models_mae.index)
|
102 |
fig.update_layout(title="Top 10 models by rMAE", xaxis_title="", yaxis_title="")
|
103 |
st.plotly_chart(fig, use_container_width=True)
|
104 |
|
|
|
238 |
"Aggregation", ["min", "mean", "median", "max", "std"], index=1
|
239 |
)
|
240 |
st.markdown(f"#### {aggregation.capitalize()} {metric} per building")
|
241 |
+
|
242 |
+
rank_df = (
|
243 |
+
data_to_plot.groupby(["model"])
|
244 |
+
.agg("median", numeric_only=True)
|
245 |
+
.sort_values(by=f"{metric}.{aggregation}")
|
246 |
+
.reset_index()
|
247 |
+
.rename_axis("rank")
|
248 |
+
.reset_index()[["rank", "model"]]
|
249 |
+
)
|
250 |
+
|
251 |
fig = px.box(
|
252 |
+
data_to_plot.merge(rank_df, on="model").sort_values(by="rank"),
|
253 |
x=f"{metric}.{aggregation}",
|
254 |
y="model",
|
255 |
color="model",
|
|
|
309 |
key="table_aggregation",
|
310 |
)
|
311 |
|
312 |
+
metrics_per_building_table = data_to_plot.groupby(["model"]).agg(
|
313 |
+
aggregation, numeric_only=True
|
314 |
+
)[
|
315 |
[
|
316 |
f"{metric}.min",
|
317 |
f"{metric}.mean",
|
|
|
330 |
return styler
|
331 |
|
332 |
st.markdown(f"#### {aggregation.capitalize()} {metric} stats per model")
|
333 |
+
styled_table = metrics_per_building_table.style.pipe(custom_table)
|
334 |
st.dataframe(styled_table, use_container_width=True)
|
335 |
|
336 |
+
metrics_per_building_table = (
|
337 |
data_to_plot.groupby(["model", "unique_id"])
|
338 |
.apply(aggregation, numeric_only=True)
|
339 |
.reset_index()
|
340 |
.pivot(index="model", columns="unique_id", values=f"{metric}.{aggregation}")
|
341 |
)
|
342 |
+
metrics_per_building_table.insert(
|
343 |
+
0, "median", metrics_per_building_table.median(axis=1)
|
344 |
+
)
|
345 |
+
metrics_per_building_table.insert(
|
346 |
+
0, "mean", metrics_per_building_table.mean(axis=1)
|
347 |
+
)
|
348 |
+
metrics_per_building_table = metrics_per_building_table.sort_values(by="mean")
|
349 |
|
350 |
def custom_table(styler):
|
351 |
styler.background_gradient(cmap="seismic", axis=None)
|
|
|
356 |
return styler
|
357 |
|
358 |
st.markdown(f"#### {aggregation.capitalize()} {metric} stats per building")
|
359 |
+
styled_table = metrics_per_building_table.style.pipe(custom_table)
|
360 |
st.dataframe(styled_table, use_container_width=True)
|
361 |
|
362 |
|