|
import gradio as gr |
|
from PIL import Image |
|
|
|
import torch |
|
|
|
from torchvision import transforms |
|
from transformers import ( |
|
CLIPProcessor, |
|
CLIPModel, |
|
CLIPTokenizer, |
|
CLIPTextModelWithProjection, |
|
CLIPVisionModelWithProjection, |
|
CLIPFeatureExtractor, |
|
) |
|
|
|
import math |
|
from typing import List |
|
from PIL import Image, ImageChops |
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import UnCLIPPipeline |
|
|
|
|
|
|
|
from transformers import CLIPTokenizer |
|
|
|
from src.priors.prior_transformer import ( |
|
PriorTransformer, |
|
) |
|
from src.pipelines.pipeline_kandinsky_prior import KandinskyPriorPipeline |
|
|
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
__DEVICE__ = "cpu" |
|
if torch.cuda.is_available(): |
|
__DEVICE__ = "cuda" |
|
|
|
class Ours: |
|
def __init__(self, device): |
|
text_encoder = ( |
|
CLIPTextModelWithProjection.from_pretrained( |
|
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", |
|
projection_dim=1280, |
|
torch_dtype=torch.float32, |
|
) |
|
.eval() |
|
.requires_grad_(False) |
|
) |
|
|
|
tokenizer = CLIPTokenizer.from_pretrained( |
|
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k" |
|
) |
|
|
|
prior = PriorTransformer.from_pretrained( |
|
"ECLIPSE-Community/ECLIPSE_KandinskyV22_Prior", |
|
torch_dtype=torch.float32, |
|
) |
|
|
|
self.pipe_prior = KandinskyPriorPipeline.from_pretrained( |
|
"kandinsky-community/kandinsky-2-2-prior", |
|
prior=prior, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
torch_dtype=torch.float32, |
|
).to(device) |
|
|
|
self.pipe = DiffusionPipeline.from_pretrained( |
|
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float32 |
|
).to(device) |
|
|
|
def inference(self, text, negative_text, steps, guidance_scale): |
|
gen_images = [] |
|
for i in range(1): |
|
image_emb, negative_image_emb = self.pipe_prior( |
|
text, negative_prompt=negative_text |
|
).to_tuple() |
|
image = self.pipe( |
|
image_embeds=image_emb, |
|
negative_image_embeds=negative_image_emb, |
|
num_inference_steps=steps, |
|
guidance_scale=guidance_scale, |
|
).images |
|
gen_images.append(image[0]) |
|
return gen_images |
|
|
|
|
|
selected_model = Ours(device=__DEVICE__) |
|
|
|
|
|
def get_images(text, negative_text, steps, guidance_scale): |
|
images = selected_model.inference(text, negative_text, steps, guidance_scale) |
|
new_images = [] |
|
for img in images: |
|
new_images.append(img) |
|
return new_images[0] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
"""<h1 style="text-align: center;"><b><i>ECLIPSE</i>: Revisiting the Text-to-Image Prior for Effecient Image Generation</b></h1> |
|
<h1 style='text-align: center;'><a href='https://eclipse-t2i.vercel.app/'>Project Page</a> | <a href='https://eclipse-t2i.vercel.app/'>Paper</a> </h1> |
|
""" |
|
) |
|
|
|
with gr.Group(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
text = gr.Textbox( |
|
label="Enter your prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
elem_id="prompt-text-input", |
|
).style( |
|
border=(True, False, True, True), |
|
rounded=(True, False, False, True), |
|
container=False, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
negative_text = gr.Textbox( |
|
label="Enter your negative prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your negative prompt", |
|
elem_id="prompt-text-input", |
|
).style( |
|
border=(True, False, True, True), |
|
rounded=(True, False, False, True), |
|
container=False, |
|
) |
|
|
|
with gr.Row(): |
|
steps = gr.Slider(label="Steps", minimum=10, maximum=100, value=50, step=1) |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", minimum=0, maximum=10, value=7.5, step=0.1 |
|
) |
|
|
|
with gr.Row(): |
|
btn = gr.Button(value="Generate Image", full_width=False) |
|
|
|
gallery = gr.Image( |
|
height=512, width=512, label="Generated images", show_label=True, elem_id="gallery" |
|
).style(preview=False, columns=1) |
|
|
|
btn.click( |
|
get_images, |
|
inputs=[ |
|
text, |
|
negative_text, |
|
steps, |
|
guidance_scale, |
|
], |
|
outputs=gallery, |
|
) |
|
text.submit( |
|
get_images, |
|
inputs=[ |
|
text, |
|
negative_text, |
|
steps, |
|
guidance_scale, |
|
], |
|
outputs=gallery, |
|
) |
|
negative_text.submit( |
|
get_images, |
|
inputs=[ |
|
text, |
|
negative_text, |
|
steps, |
|
guidance_scale, |
|
], |
|
outputs=gallery, |
|
) |
|
|
|
with gr.Accordion(label="Ethics & Privacy", open=False): |
|
gr.HTML( |
|
"""<div class="acknowledgments"> |
|
<p><h4>Privacy</h4> |
|
We do not collect any images or key data. This demo is designed with sole purpose of fun and reducing misuse of AI. |
|
<p><h4>Biases and content acknowledgment</h4> |
|
This model will have the same biases as pre-trained CLIP model. </div> |
|
""" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |
|
|