# dataset settings custom_imports = dict(imports=[ 'openpsg.datasets', 'openpsg.datasets.pipelines', ], allow_failed_imports=False) dataset_type = 'SceneGraphDataset' ann_file = 'data/vg/data_openpsg.json' img_dir = 'data/vg/VG_100K' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadSceneGraphAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict(samples_per_gpu=2, workers_per_gpu=2, train=dict(type=dataset_type, ann_file=ann_file, img_prefix=img_dir, pipeline=train_pipeline, split='train'), val=dict(type=dataset_type, ann_file=ann_file, img_prefix=img_dir, pipeline=test_pipeline, split='test'), test=dict(type=dataset_type, ann_file=ann_file, img_prefix=img_dir, pipeline=test_pipeline, split='test')) evaluation = dict(interval=1, metric='bbox')