Update tokenizer.py
Browse files- tokenizer.py +12 -14
tokenizer.py
CHANGED
|
@@ -4,18 +4,18 @@ subprocess.run(["pip", "install", "spacy"])
|
|
| 4 |
|
| 5 |
import spacy
|
| 6 |
|
| 7 |
-
|
| 8 |
|
| 9 |
-
|
| 10 |
|
| 11 |
# 加载英文模型
|
| 12 |
-
|
| 13 |
|
| 14 |
import nltk
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
|
| 20 |
import jieba
|
| 21 |
|
|
@@ -38,26 +38,24 @@ with codecs.open('model2_data/bpecode.en', 'r', 'utf-8') as f:
|
|
| 38 |
|
| 39 |
def spacy_tokenize(line):
|
| 40 |
# 使用spaCy处理文本
|
| 41 |
-
|
| 42 |
# 获取单词列表
|
| 43 |
-
|
| 44 |
# 将单词连接成一个字符串,单词间用一个空格间隔
|
| 45 |
-
|
| 46 |
-
return ""
|
| 47 |
|
| 48 |
|
| 49 |
def nltk_tokenize(line):
|
| 50 |
# 使用NLTK的word_tokenize进行分词
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
return []
|
| 55 |
|
| 56 |
|
| 57 |
def jieba_tokenize(line):
|
| 58 |
# 使用jieba进行分词
|
| 59 |
tokens = list(jieba1.cut(line.strip())) # strip用于去除可能的空白字符
|
| 60 |
-
|
| 61 |
return tokens
|
| 62 |
|
| 63 |
def tokenize(line, mode):
|
|
|
|
| 4 |
|
| 5 |
import spacy
|
| 6 |
|
| 7 |
+
spacy.cli.download("en_core_web_sm")
|
| 8 |
|
| 9 |
+
from spacy.tokens import Doc
|
| 10 |
|
| 11 |
# 加载英文模型
|
| 12 |
+
nlp = spacy.load('en_core_web_sm')
|
| 13 |
|
| 14 |
import nltk
|
| 15 |
|
| 16 |
+
nltk.download('punkt')
|
| 17 |
|
| 18 |
+
from nltk.tokenize import word_tokenize
|
| 19 |
|
| 20 |
import jieba
|
| 21 |
|
|
|
|
| 38 |
|
| 39 |
def spacy_tokenize(line):
|
| 40 |
# 使用spaCy处理文本
|
| 41 |
+
doc = nlp(line)
|
| 42 |
# 获取单词列表
|
| 43 |
+
words = [token.text for token in doc]
|
| 44 |
# 将单词连接成一个字符串,单词间用一个空格间隔
|
| 45 |
+
return ' '.join(words)
|
|
|
|
| 46 |
|
| 47 |
|
| 48 |
def nltk_tokenize(line):
|
| 49 |
# 使用NLTK的word_tokenize进行分词
|
| 50 |
+
tokens = word_tokenize(line)
|
| 51 |
+
|
| 52 |
+
return tokens
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
def jieba_tokenize(line):
|
| 56 |
# 使用jieba进行分词
|
| 57 |
tokens = list(jieba1.cut(line.strip())) # strip用于去除可能的空白字符
|
| 58 |
+
|
| 59 |
return tokens
|
| 60 |
|
| 61 |
def tokenize(line, mode):
|