Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import fitz # PyMuPDF
|
3 |
+
import faiss
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import numpy as np
|
6 |
+
from phi.agent import Agent
|
7 |
+
from phi.model.groq import Groq
|
8 |
+
|
9 |
+
# Load embedding model
|
10 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
11 |
+
|
12 |
+
def agent_response(question, retrieved_text):
|
13 |
+
agent = Agent(
|
14 |
+
model=Groq(id="llama-3.3-70b-versatile"),
|
15 |
+
markdown=True,
|
16 |
+
description="You are an AI assistant that provides the answer based on the provided document.",
|
17 |
+
instructions=[
|
18 |
+
f"First read the question carefully. The question is: **{question}**",
|
19 |
+
f"Then read the document provided to you as a text. The document is: \n**{retrieved_text}**\n",
|
20 |
+
"Finally answer the question based on the provided document only. Don't try to give random responses."
|
21 |
+
]
|
22 |
+
)
|
23 |
+
response = agent.run(question + '\n' + retrieved_text).content
|
24 |
+
return response
|
25 |
+
|
26 |
+
class PDFChatbot:
|
27 |
+
def __init__(self):
|
28 |
+
self.text_chunks = []
|
29 |
+
self.index = None
|
30 |
+
|
31 |
+
def process_pdf(self, pdf_file):
|
32 |
+
"""Extract text from PDF and create FAISS index."""
|
33 |
+
self.text_chunks = []
|
34 |
+
doc = fitz.open(pdf_file)
|
35 |
+
for page in doc:
|
36 |
+
self.text_chunks.append(page.get_text("text"))
|
37 |
+
|
38 |
+
# Embed the chunks
|
39 |
+
embeddings = embedding_model.encode(self.text_chunks, convert_to_numpy=True)
|
40 |
+
|
41 |
+
# Create FAISS index
|
42 |
+
self.index = faiss.IndexFlatL2(embeddings.shape[1])
|
43 |
+
self.index.add(embeddings)
|
44 |
+
return "PDF processed successfully!"
|
45 |
+
|
46 |
+
def chat(self, query):
|
47 |
+
"""Retrieve the most relevant chunk for a query."""
|
48 |
+
if self.index is None:
|
49 |
+
return "Please upload a PDF first."
|
50 |
+
|
51 |
+
query_embedding = embedding_model.encode([query], convert_to_numpy=True)
|
52 |
+
_, indices = self.index.search(query_embedding, 1) # Get top match
|
53 |
+
retrieved_text = self.text_chunks[indices[0][0]]
|
54 |
+
response = agent_response(query, retrieved_text)
|
55 |
+
return response
|
56 |
+
|
57 |
+
# Instantiate chatbot
|
58 |
+
chatbot = PDFChatbot()
|
59 |
+
|
60 |
+
st.title("Chat with your PDF")
|
61 |
+
|
62 |
+
uploaded_file = st.file_uploader("Upload your PDF", type=["pdf"])
|
63 |
+
if uploaded_file:
|
64 |
+
message = chatbot.process_pdf(uploaded_file)
|
65 |
+
st.success(message)
|
66 |
+
|
67 |
+
query = st.text_input("Ask a question")
|
68 |
+
if st.button("Ask"):
|
69 |
+
if query:
|
70 |
+
response = chatbot.chat(query)
|
71 |
+
st.text_area("Answer", response, height=200)
|