Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import nltk
|
4 |
+
from textblob import TextBlob
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from wordcloud import WordCloud
|
7 |
+
|
8 |
+
# Ensure necessary NLTK datasets are downloaded
|
9 |
+
nltk.download('punkt')
|
10 |
+
|
11 |
+
# Function to analyze sentiment
|
12 |
+
def analyze_sentiment(text):
|
13 |
+
analysis = TextBlob(text)
|
14 |
+
return analysis.sentiment.polarity # Returns sentiment score (-1 to 1)
|
15 |
+
|
16 |
+
# Function to categorize microaggressions (basic NLP)
|
17 |
+
def categorize_microaggression(text):
|
18 |
+
keywords = {
|
19 |
+
"Microinvalidation": ["you're overreacting", "stop being so sensitive", "I don’t see color"],
|
20 |
+
"Microinsult": ["you’re so articulate", "where are you really from", "you must be good at math"],
|
21 |
+
"Microassault": ["racial slur", "explicit insult", "offensive joke"]
|
22 |
+
}
|
23 |
+
|
24 |
+
for category, phrases in keywords.items():
|
25 |
+
for phrase in phrases:
|
26 |
+
if phrase in text.lower():
|
27 |
+
return category
|
28 |
+
return "Uncategorized"
|
29 |
+
|
30 |
+
# Streamlit UI
|
31 |
+
st.title("MicroAggression Insight Tool")
|
32 |
+
st.write("Analyze, categorize, and visualize reported microaggressions.")
|
33 |
+
|
34 |
+
# Collect user input
|
35 |
+
user_input = st.text_area("Enter a microaggression example:")
|
36 |
+
|
37 |
+
if st.button("Analyze"):
|
38 |
+
if user_input:
|
39 |
+
sentiment_score = analyze_sentiment(user_input)
|
40 |
+
category = categorize_microaggression(user_input)
|
41 |
+
|
42 |
+
# Display results
|
43 |
+
st.write(f"**Predicted Category:** {category}")
|
44 |
+
st.write(f"**Sentiment Score:** {sentiment_score:.2f} (Negative: -1, Neutral: 0, Positive: 1)")
|
45 |
+
|
46 |
+
# Store input in a dataframe
|
47 |
+
df = pd.DataFrame({"Text": [user_input], "Category": [category], "Sentiment": [sentiment_score]})
|
48 |
+
|
49 |
+
# Save locally (optional)
|
50 |
+
df.to_csv("data.csv", mode='a', header=False, index=False)
|
51 |
+
|
52 |
+
# Load existing data
|
53 |
+
try:
|
54 |
+
data = pd.read_csv("data.csv", names=["Text", "Category", "Sentiment"])
|
55 |
+
|
56 |
+
if not data.empty:
|
57 |
+
st.subheader("Data Insights")
|
58 |
+
|
59 |
+
# Show category distribution
|
60 |
+
st.write("### Microaggression Category Distribution")
|
61 |
+
category_counts = data["Category"].value_counts()
|
62 |
+
fig, ax = plt.subplots()
|
63 |
+
category_counts.plot(kind='bar', ax=ax)
|
64 |
+
st.pyplot(fig)
|
65 |
+
|
66 |
+
# Generate a word cloud
|
67 |
+
st.write("### Common Words in Microaggressions")
|
68 |
+
wordcloud = WordCloud(width=800, height=400, background_color="white").generate(" ".join(data["Text"]))
|
69 |
+
fig, ax = plt.subplots()
|
70 |
+
ax.imshow(wordcloud, interpolation="bilinear")
|
71 |
+
ax.axis("off")
|
72 |
+
st.pyplot(fig)
|
73 |
+
except FileNotFoundError:
|
74 |
+
st.write("No data available yet.")
|