Durganihantri commited on
Commit
0a14a41
Β·
verified Β·
1 Parent(s): 5789b86

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +109 -0
README.md CHANGED
@@ -10,3 +10,112 @@ pinned: false
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
13
+
14
+ πŸ“– AI-Powered Adaptive Reading Engagement Model
15
+
16
+ πŸ” Understanding Social Cognition & Reading Behavior in a Digital World
17
+
18
+ πŸ“ Overview
19
+
20
+ The shift towards digital reading presents challenges and opportunities in how people engage with text. Many students struggle with reading motivation, comprehension, and goal-setting in digital environments. This project aims to analyze and enhance reading engagement using AI-powered Natural Language Processing (NLP), sentiment analysis, and emotion detection to create an adaptive reading system.
21
+
22
+ 🎯 Objectives
23
+
24
+ βœ” Analyze reading motivation & engagement in digital environments.
25
+ βœ” Detect emotions & sentiment from reading interactions.
26
+ βœ” Develop an adaptive reading model that adjusts text difficulty based on comprehension.
27
+ βœ” Encourage goal-setting in reading behavior using AI-generated feedback.
28
+
29
+ This project aligns with research on social cognition and motivation sciences, contributing to educational psychology, digital literacy, and human-AI interaction studies.
30
+
31
+ πŸš€ Features
32
+
33
+ πŸ”Ή Sentiment & Emotion Detection – Uses NLP models to analyze user engagement.
34
+ πŸ”Ή Adaptive Reading Level Detection – Adjusts difficulty based on comprehension.
35
+ πŸ”Ή Reading Goal Tracker – Helps users track reading progress.
36
+ πŸ”Ή AI-Powered Discussion Prompts – Generates thought-provoking questions to enhance engagement.
37
+ πŸ”Ή Visual Analytics Dashboard – Displays engagement trends and sentiment scores.
38
+
39
+ 🧠 How the AI Works
40
+
41
+ 1️⃣ User selects or enters a text passage.
42
+ 2️⃣ AI analyzes the text using sentiment analysis (positive/negative/neutral).
43
+ 3️⃣ AI detects emotional engagement (e.g., joy, frustration, curiosity).
44
+ 4️⃣ System suggests adaptive modifications (simpler text for struggling readers, more complex text for advanced users).
45
+ 5️⃣ AI generates reflection prompts to encourage deeper engagement.
46
+ 6️⃣ A dashboard visualizes trends in reading engagement over time.
47
+
48
+ πŸ’‘ Research Applications
49
+
50
+ This project can be used in:
51
+ βœ” Educational research – Understanding students’ digital reading behavior.
52
+ βœ” Cognitive psychology – Studying motivation & attention in reading.
53
+ βœ” AI in education – Exploring AI-enhanced literacy interventions.
54
+ βœ” Human-AI interaction – Investigating how AI influences reading engagement.
55
+
56
+ πŸ“Œ Installation Guide
57
+
58
+ To run the app locally:
59
+
60
+ 1️⃣ Clone this repository
61
+
62
+ git clone https://huggingface.co/spaces/Durganihantri/AI-Reading-Engagement
63
+ cd AI-Reading-Engagement
64
+
65
+ 2️⃣ Install dependencies
66
+
67
+ pip install -r requirements.txt
68
+
69
+ 3️⃣ Run the app
70
+
71
+ streamlit run app.py
72
+
73
+ 4️⃣ View the app in your browser
74
+ Go to http://localhost:8501/
75
+
76
+ πŸ“Š Example Output
77
+
78
+ πŸ”Ή Input Text:
79
+ β€œReading is an essential skill that shapes our understanding of the world.”
80
+
81
+ πŸ”Ή Sentiment Analysis:
82
+ βœ… Positive: 85% | ❌ Negative: 5% | βšͺ Neutral: 10%
83
+
84
+ πŸ”Ή Emotion Detection:
85
+ 🎭 Curiosity (70%), Engagement (65%), Frustration (5%)
86
+
87
+ πŸ”Ή Adaptive Reading Suggestion:
88
+ πŸ“– β€œTry reading a related article on critical thinking in reading.”
89
+
90
+ πŸ”Ή AI-Generated Reflection Prompt:
91
+ πŸ€” β€œHow does reading shape your perception of reality?”
92
+
93
+ 🌍 Try It Online
94
+
95
+ πŸ‘‰ Live Demo on Hugging Face
96
+
97
+ πŸ›  Technologies Used
98
+ β€’ Streamlit – Frontend UI
99
+ β€’ Transformers (Hugging Face) – NLP models for sentiment & emotion detection
100
+ β€’ NLTK & spaCy – Text preprocessing & sentiment analysis
101
+ β€’ Matplotlib – Data visualization
102
+ β€’ Python – Backend scripting
103
+
104
+ 🀝 Contributing
105
+
106
+ We welcome contributions! You can:
107
+ βœ” Improve the adaptive learning model.
108
+ βœ” Enhance data visualization & analytics.
109
+ βœ” Expand the AI’s ability to suggest more personalized reading insights.
110
+
111
+ Fork the repository and submit a pull request!
112
+
113
+ πŸ“œ License
114
+
115
+ This project is licensed under the MIT License.
116
+
117
+ πŸ“¬ Contact
118
+
119
+ πŸ”Ή Author: Durganihantri
120
+ πŸ”Ή Email: [email protected]
121
+ πŸ”Ή LinkedIn: http://linkedin.com/in/durganihantri