Spaces:
Build error
Build error
Durganihantri
commited on
Update app.py
Browse files- backend/app.py +171 -32
backend/app.py
CHANGED
|
@@ -1,42 +1,181 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
| 2 |
import cv2
|
|
|
|
|
|
|
|
|
|
| 3 |
import speech_recognition as sr
|
| 4 |
-
import
|
|
|
|
|
|
|
| 5 |
from deepface import DeepFace
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
cap = cv2.VideoCapture(video_path)
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
| 19 |
ret, frame = cap.read()
|
| 20 |
if not ret:
|
| 21 |
break
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
cap.release()
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import tempfile
|
| 3 |
+
import os
|
| 4 |
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
import librosa
|
| 8 |
import speech_recognition as sr
|
| 9 |
+
import noisereduce as nr
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import plotly.express as px
|
| 12 |
from deepface import DeepFace
|
| 13 |
+
from pydub import AudioSegment
|
| 14 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 15 |
|
| 16 |
+
# Ensure Pydub uses ffmpeg
|
| 17 |
+
AudioSegment.converter = "/usr/bin/ffmpeg"
|
| 18 |
|
| 19 |
+
# Title & Instructions
|
| 20 |
+
st.title("π€ AI Child Behavior Assessment")
|
| 21 |
+
st.markdown(
|
| 22 |
+
"""
|
| 23 |
+
### How to Use:
|
| 24 |
+
1οΈβ£ Choose an **analysis type** below.
|
| 25 |
+
2οΈβ£ Upload the required file(s).
|
| 26 |
+
3οΈβ£ Click the **Analyze** button to process the data.
|
| 27 |
+
"""
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Load AI Model for Speech Recognition
|
| 31 |
+
st.write("β³ Loading AI Speech Model...")
|
| 32 |
+
try:
|
| 33 |
+
processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english")
|
| 34 |
+
model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english")
|
| 35 |
+
st.success("β
AI Speech Model Loaded!")
|
| 36 |
+
except Exception as e:
|
| 37 |
+
st.error(f"β Error loading speech model: {e}")
|
| 38 |
+
|
| 39 |
+
# ======================== DEFINE VIDEO ANALYSIS FUNCTION ========================
|
| 40 |
+
def analyze_video(video_path):
|
| 41 |
+
"""Processes video and extracts emotions with visualization"""
|
| 42 |
+
st.write("π Analyzing Emotions in Video...")
|
| 43 |
cap = cv2.VideoCapture(video_path)
|
| 44 |
+
frame_count = 0
|
| 45 |
+
emotions_detected = []
|
| 46 |
+
|
| 47 |
+
while cap.isOpened():
|
| 48 |
ret, frame = cap.read()
|
| 49 |
if not ret:
|
| 50 |
break
|
| 51 |
+
if frame_count % 10 == 0: # Analyze every 10th frame
|
| 52 |
+
try:
|
| 53 |
+
analysis = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False)
|
| 54 |
+
emotions_detected.append(analysis[0]['dominant_emotion'])
|
| 55 |
+
except Exception as e:
|
| 56 |
+
st.error(f"β οΈ DeepFace error: {e}")
|
| 57 |
+
frame_count += 1
|
| 58 |
+
|
| 59 |
cap.release()
|
| 60 |
+
if emotions_detected:
|
| 61 |
+
most_common_emotion = max(set(emotions_detected), key=emotions_detected.count)
|
| 62 |
+
st.success(f"π§ Most detected emotion: {most_common_emotion}")
|
| 63 |
+
|
| 64 |
+
# Visualization
|
| 65 |
+
emotion_counts = pd.Series(emotions_detected).value_counts()
|
| 66 |
+
emotion_df = pd.DataFrame({'Emotion': emotion_counts.index, 'Count': emotion_counts.values})
|
| 67 |
+
fig = px.bar(emotion_df, x='Emotion', y='Count', title="Emotion Distribution in Video", color='Emotion')
|
| 68 |
+
st.plotly_chart(fig)
|
| 69 |
+
else:
|
| 70 |
+
st.warning("β οΈ No emotions detected. Try a different video.")
|
| 71 |
+
|
| 72 |
+
# ======================== DEFINE AUDIO ANALYSIS FUNCTION ========================
|
| 73 |
+
def transcribe_audio(audio_path):
|
| 74 |
+
"""Processes audio and extracts transcription with visualization"""
|
| 75 |
+
try:
|
| 76 |
+
st.write(f"π Processing Audio File...")
|
| 77 |
+
speech, sr = librosa.load(audio_path, sr=16000)
|
| 78 |
+
|
| 79 |
+
# Enhanced Preprocessing
|
| 80 |
+
speech = nr.reduce_noise(y=speech, sr=sr, prop_decrease=0.4)
|
| 81 |
+
speech = librosa.effects.trim(speech)[0]
|
| 82 |
+
speech = librosa.util.normalize(speech)
|
| 83 |
+
|
| 84 |
+
st.write("π€ Processing audio with AI model...")
|
| 85 |
+
input_values = processor(speech, sampling_rate=16000, return_tensors="pt").input_values
|
| 86 |
+
|
| 87 |
+
with torch.no_grad():
|
| 88 |
+
logits = model(input_values).logits
|
| 89 |
+
|
| 90 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 91 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
| 92 |
+
|
| 93 |
+
st.success(f"π Transcription (AI Model): {transcription}")
|
| 94 |
+
|
| 95 |
+
# Visualization
|
| 96 |
+
word_count = pd.Series(transcription.split()).value_counts()
|
| 97 |
+
word_df = pd.DataFrame({'Word': word_count.index, 'Count': word_count.values})
|
| 98 |
+
fig = px.bar(word_df, x='Word', y='Count', title="Word Frequency in Transcription", color='Word')
|
| 99 |
+
st.plotly_chart(fig)
|
| 100 |
+
except Exception as e:
|
| 101 |
+
st.error(f"β οΈ Error in AI Speech Processing: {e}")
|
| 102 |
+
|
| 103 |
+
# ======================== USER SELECTS ANALYSIS MODE ========================
|
| 104 |
+
analysis_option = st.radio(
|
| 105 |
+
"Select Analysis Type:",
|
| 106 |
+
["πΉ Video Only (Facial Emotion)", "π€ Audio Only (Speech Analysis)", "π¬ Video & Audio (Multimodal)"]
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# ======================== VIDEO ONLY ANALYSIS ========================
|
| 110 |
+
if analysis_option == "πΉ Video Only (Facial Emotion)":
|
| 111 |
+
st.header("π Upload a Video for Emotion Analysis")
|
| 112 |
+
video_file = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov"])
|
| 113 |
+
|
| 114 |
+
if video_file:
|
| 115 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video:
|
| 116 |
+
temp_video.write(video_file.read())
|
| 117 |
+
video_path = temp_video.name
|
| 118 |
+
st.success("π Video uploaded successfully!")
|
| 119 |
+
|
| 120 |
+
if st.button("Analyze Video"):
|
| 121 |
+
analyze_video(video_path)
|
| 122 |
+
|
| 123 |
+
# ======================== AUDIO ONLY ANALYSIS ========================
|
| 124 |
+
elif analysis_option == "π€ Audio Only (Speech Analysis)":
|
| 125 |
+
st.header("π€ Upload an Audio File for Speech Analysis")
|
| 126 |
+
audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
|
| 127 |
+
|
| 128 |
+
if audio_file:
|
| 129 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
| 130 |
+
temp_audio.write(audio_file.read())
|
| 131 |
+
audio_path = temp_audio.name
|
| 132 |
+
st.success("π€ Audio uploaded successfully!")
|
| 133 |
+
|
| 134 |
+
if st.button("Analyze Audio"):
|
| 135 |
+
transcribe_audio(audio_path)
|
| 136 |
+
|
| 137 |
+
# ======================== MULTIMODAL ANALYSIS (VIDEO + AUDIO) ========================
|
| 138 |
+
elif analysis_option == "π¬ Video & Audio (Multimodal)":
|
| 139 |
+
st.header("π₯ Upload a **Single File** for Video & Audio Combined Analysis")
|
| 140 |
+
multimodal_file = st.file_uploader("Upload a **video file with audio**", type=["mp4", "avi", "mov"])
|
| 141 |
+
|
| 142 |
+
if multimodal_file:
|
| 143 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
|
| 144 |
+
temp_file.write(multimodal_file.read())
|
| 145 |
+
multimodal_path = temp_file.name
|
| 146 |
+
|
| 147 |
+
st.success("β
Multimodal file uploaded successfully!")
|
| 148 |
+
|
| 149 |
+
if st.button("Analyze Video & Audio Together"):
|
| 150 |
+
def analyze_multimodal(multimodal_path):
|
| 151 |
+
st.write("π Extracting Video & Audio...")
|
| 152 |
+
|
| 153 |
+
# Extract Video Emotion
|
| 154 |
+
video_emotions = analyze_video(multimodal_path)
|
| 155 |
+
|
| 156 |
+
# Extract Audio for Speech Processing
|
| 157 |
+
audio_transcription = transcribe_audio(multimodal_path)
|
| 158 |
+
|
| 159 |
+
# Multimodal Analysis Visualization
|
| 160 |
+
st.header("π Multimodal Analysis Results")
|
| 161 |
+
if not video_emotions or not audio_transcription:
|
| 162 |
+
st.error("β Could not extract both Video & Audio insights.")
|
| 163 |
+
return
|
| 164 |
+
|
| 165 |
+
# Emotion-Speech Comparison
|
| 166 |
+
speech_emotion = "Neutral"
|
| 167 |
+
if any(word in audio_transcription.lower() for word in ["angry", "mad"]):
|
| 168 |
+
speech_emotion = "Angry"
|
| 169 |
+
elif any(word in audio_transcription.lower() for word in ["happy", "excited"]):
|
| 170 |
+
speech_emotion = "Happy"
|
| 171 |
+
elif any(word in audio_transcription.lower() for word in ["sad", "crying"]):
|
| 172 |
+
speech_emotion = "Sad"
|
| 173 |
+
|
| 174 |
+
fig = px.pie(
|
| 175 |
+
names=["Video Emotion", "Speech Emotion"],
|
| 176 |
+
values=[len(video_emotions), 1],
|
| 177 |
+
title=f"Comparison: Video ({video_emotions[0]}) vs. Speech ({speech_emotion})"
|
| 178 |
+
)
|
| 179 |
+
st.plotly_chart(fig)
|
| 180 |
+
|
| 181 |
+
analyze_multimodal(multimodal_path)
|