import os import tempfile import streamlit as st import pandas as pd from datasets import load_dataset import time from langchain.agents.agent_types import AgentType from langchain_experimental.agents.agent_toolkits import create_csv_agent from langchain_openai import ChatOpenAI import ast # Streamlit App Title and Description st.title("Patent Data Analysis with LangChain") st.write("""This app allows you to analyze patent-related datasets interactively using LangChain agents. You can upload datasets, load from Hugging Face, or use a repository directory dataset.""") # Dataset loading without caching to support progress bar def load_huggingface_dataset(dataset_name): # Initialize progress bar progress_bar = st.progress(0) try: # Incrementally update progress progress_bar.progress(10) dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True) progress_bar.progress(50) if hasattr(dataset, "to_pandas"): df = dataset.to_pandas() else: df = pd.DataFrame(dataset) progress_bar.progress(100) # Final update to 100% return df except Exception as e: progress_bar.progress(0) # Reset progress bar on failure raise e def load_uploaded_csv(uploaded_file): # Initialize progress bar progress_bar = st.progress(0) try: # Simulate progress progress_bar.progress(10) time.sleep(1) # Simulate file processing delay progress_bar.progress(50) df = pd.read_csv(uploaded_file) progress_bar.progress(100) # Final update return df except Exception as e: progress_bar.progress(0) # Reset progress bar on failure raise e # Dataset selection logic def load_dataset_into_session(): input_option = st.radio( "Select Dataset Input:", ["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], index=1, horizontal=True ) # Option 1: Load dataset from the repo directory if input_option == "Use Repo Directory Dataset": file_path = "./source/test.csv" if st.button("Load Dataset"): try: with st.spinner("Loading dataset from the repo directory..."): st.session_state.df = pd.read_csv(file_path) st.success(f"File loaded successfully from '{file_path}'!") except Exception as e: st.error(f"Error loading dataset from the repo directory: {e}") # Option 2: Load dataset from Hugging Face elif input_option == "Use Hugging Face Dataset": dataset_name = st.text_input( "Enter Hugging Face Dataset Name:", value="HUPD/hupd" ) if st.button("Load Dataset"): try: st.session_state.df = load_huggingface_dataset(dataset_name) st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!") except Exception as e: st.error(f"Error loading Hugging Face dataset: {e}") # Option 3: Upload CSV File elif input_option == "Upload CSV File": uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"]) if uploaded_file: try: st.session_state.df = load_uploaded_csv(uploaded_file) st.success("File uploaded successfully!") except Exception as e: st.error(f"Error reading uploaded file: {e}") # Load dataset into session load_dataset_into_session() if "df" in st.session_state: df = st.session_state.df # Display dataset metadata st.write("### Dataset Metadata") st.text(f"Number of Rows: {df.shape[0]}") st.text(f"Number of Columns: {df.shape[1]}") st.text(f"Column Names: {', '.join(df.columns)}") # Display dataset preview st.write("### Dataset Preview") num_rows = st.slider("Select number of rows to display:", min_value=5, max_value=50, value=10) st.dataframe(df.head(num_rows)) # Define LangChain CSV Agent st.header("Run Queries on Patent Data") with st.spinner("Setting up LangChain CSV Agent..."): with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as temp_file: df.to_csv(temp_file.name, index=False) csv_agent = create_csv_agent( ChatOpenAI(temperature=0, model="gpt-4o", api_key=os.getenv("OPENAI_API_KEY")), path=[temp_file.name], verbose=True, agent_type=AgentType.OPENAI_FUNCTIONS, allow_dangerous_code=True ) # Query Input and Execution query = st.text_area("Enter your natural language query:", "How many patents are related to AI?") if st.button("Run Query"): with st.spinner("Running query..."): try: # Token limit configuration max_rows = 200 # Adjust chunk size dynamically total_rows = len(df) if total_rows > max_rows: results = [] for start in range(0, total_rows, max_rows): chunk = df.iloc[start:start + max_rows] with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as chunk_file: chunk.to_csv(chunk_file.name, index=False) # Update the agent dynamically with the chunk csv_agent = create_csv_agent( ChatOpenAI(temperature=0, model="gpt-4o", api_key=os.getenv("OPENAI_API_KEY")), path=[chunk_file.name], verbose=False, agent_type=AgentType.OPENAI_FUNCTIONS, allow_dangerous_code=True ) result = csv_agent.invoke(query) results.append(result) st.success("Query executed successfully!") st.write("### Combined Query Results:") st.write("\n".join(results)) else: result = csv_agent.invoke(query) st.success("Query executed successfully!") st.write("### Query Result:") st.write(result) except Exception as e: st.error(f"Error executing query: {e}")