Spaces:
Sleeping
Sleeping
Create incorrect.py
Browse files- interim/incorrect.py +149 -0
interim/incorrect.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
from datasets import load_dataset
|
5 |
+
import time
|
6 |
+
from langchain.agents.agent_types import AgentType
|
7 |
+
from langchain_experimental.agents.agent_toolkits import create_csv_agent
|
8 |
+
from langchain_openai import ChatOpenAI
|
9 |
+
import ast
|
10 |
+
|
11 |
+
# Streamlit App Title and Description
|
12 |
+
st.title("Patent Data Analysis with LangChain")
|
13 |
+
st.write("""This app allows you to analyze patent-related datasets interactively using LangChain agents. You can upload datasets, load from Hugging Face, or use a repository directory dataset.""")
|
14 |
+
|
15 |
+
# Dataset loading without caching to support progress bar
|
16 |
+
def load_huggingface_dataset(dataset_name):
|
17 |
+
# Initialize progress bar
|
18 |
+
progress_bar = st.progress(0)
|
19 |
+
try:
|
20 |
+
# Incrementally update progress
|
21 |
+
progress_bar.progress(10)
|
22 |
+
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True)
|
23 |
+
progress_bar.progress(50)
|
24 |
+
if hasattr(dataset, "to_pandas"):
|
25 |
+
df = dataset.to_pandas()
|
26 |
+
else:
|
27 |
+
df = pd.DataFrame(dataset)
|
28 |
+
progress_bar.progress(100) # Final update to 100%
|
29 |
+
return df
|
30 |
+
except Exception as e:
|
31 |
+
progress_bar.progress(0) # Reset progress bar on failure
|
32 |
+
raise e
|
33 |
+
|
34 |
+
def load_uploaded_csv(uploaded_file):
|
35 |
+
# Initialize progress bar
|
36 |
+
progress_bar = st.progress(0)
|
37 |
+
try:
|
38 |
+
# Simulate progress
|
39 |
+
progress_bar.progress(10)
|
40 |
+
time.sleep(1) # Simulate file processing delay
|
41 |
+
progress_bar.progress(50)
|
42 |
+
df = pd.read_csv(uploaded_file)
|
43 |
+
progress_bar.progress(100) # Final update
|
44 |
+
return df
|
45 |
+
except Exception as e:
|
46 |
+
progress_bar.progress(0) # Reset progress bar on failure
|
47 |
+
raise e
|
48 |
+
|
49 |
+
# Dataset selection logic
|
50 |
+
def load_dataset_into_session():
|
51 |
+
input_option = st.radio(
|
52 |
+
"Select Dataset Input:",
|
53 |
+
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], index=1, horizontal=True
|
54 |
+
)
|
55 |
+
|
56 |
+
# Option 1: Load dataset from the repo directory
|
57 |
+
if input_option == "Use Repo Directory Dataset":
|
58 |
+
file_path = "./source/test.csv"
|
59 |
+
if st.button("Load Dataset"):
|
60 |
+
try:
|
61 |
+
with st.spinner("Loading dataset from the repo directory..."):
|
62 |
+
st.session_state.df = pd.read_csv(file_path)
|
63 |
+
st.success(f"File loaded successfully from '{file_path}'!")
|
64 |
+
except Exception as e:
|
65 |
+
st.error(f"Error loading dataset from the repo directory: {e}")
|
66 |
+
|
67 |
+
# Option 2: Load dataset from Hugging Face
|
68 |
+
elif input_option == "Use Hugging Face Dataset":
|
69 |
+
dataset_name = st.text_input(
|
70 |
+
"Enter Hugging Face Dataset Name:", value="HUPD/hupd"
|
71 |
+
)
|
72 |
+
if st.button("Load Dataset"):
|
73 |
+
try:
|
74 |
+
st.session_state.df = load_huggingface_dataset(dataset_name)
|
75 |
+
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!")
|
76 |
+
except Exception as e:
|
77 |
+
st.error(f"Error loading Hugging Face dataset: {e}")
|
78 |
+
|
79 |
+
# Option 3: Upload CSV File
|
80 |
+
elif input_option == "Upload CSV File":
|
81 |
+
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"])
|
82 |
+
if uploaded_file:
|
83 |
+
try:
|
84 |
+
st.session_state.df = load_uploaded_csv(uploaded_file)
|
85 |
+
st.success("File uploaded successfully!")
|
86 |
+
except Exception as e:
|
87 |
+
st.error(f"Error reading uploaded file: {e}")
|
88 |
+
|
89 |
+
# Load dataset into session
|
90 |
+
load_dataset_into_session()
|
91 |
+
|
92 |
+
if "df" in st.session_state:
|
93 |
+
df = st.session_state.df
|
94 |
+
|
95 |
+
# Display dataset metadata
|
96 |
+
st.write("### Dataset Metadata")
|
97 |
+
st.text(f"Number of Rows: {df.shape[0]}")
|
98 |
+
st.text(f"Number of Columns: {df.shape[1]}")
|
99 |
+
st.text(f"Column Names: {', '.join(df.columns)}")
|
100 |
+
|
101 |
+
# Display dataset preview
|
102 |
+
st.write("### Dataset Preview")
|
103 |
+
num_rows = st.slider("Select number of rows to display:", min_value=5, max_value=50, value=10)
|
104 |
+
st.dataframe(df.head(num_rows))
|
105 |
+
|
106 |
+
# Define LangChain CSV Agent
|
107 |
+
st.header("Run Queries on Patent Data")
|
108 |
+
|
109 |
+
with st.spinner("Setting up LangChain CSV Agent..."):
|
110 |
+
df.to_csv("patent_data.csv", index=False)
|
111 |
+
|
112 |
+
csv_agent = create_csv_agent(
|
113 |
+
ChatOpenAI(temperature=0, model="gpt-4", api_key=os.getenv("OPENAI_API_KEY")),
|
114 |
+
path=["patent_data.csv"],
|
115 |
+
verbose=True,
|
116 |
+
agent_type=AgentType.OPENAI_FUNCTIONS,
|
117 |
+
allow_dangerous_code=True
|
118 |
+
)
|
119 |
+
|
120 |
+
# Query Input and Execution
|
121 |
+
query = st.text_area("Enter your natural language query:", "How many patents are related to AI?")
|
122 |
+
|
123 |
+
if st.button("Run Query"):
|
124 |
+
with st.spinner("Running query..."):
|
125 |
+
try:
|
126 |
+
# Split query execution into smaller chunks if needed
|
127 |
+
max_rows = 1000
|
128 |
+
total_rows = len(df)
|
129 |
+
results = []
|
130 |
+
|
131 |
+
for start in range(0, total_rows, max_rows):
|
132 |
+
chunk = df.iloc[start:start + max_rows]
|
133 |
+
chunk.to_csv("chunk_data.csv", index=False)
|
134 |
+
partial_agent = create_csv_agent(
|
135 |
+
ChatOpenAI(temperature=0, model="gpt-4", api_key=os.getenv("OPENAI_API_KEY")),
|
136 |
+
path=["chunk_data.csv"],
|
137 |
+
verbose=True,
|
138 |
+
agent_type=AgentType.OPENAI_FUNCTIONS,
|
139 |
+
allow_dangerous_code=True
|
140 |
+
)
|
141 |
+
result = partial_agent.invoke(query)
|
142 |
+
results.append(result)
|
143 |
+
|
144 |
+
st.success("Query executed successfully!")
|
145 |
+
st.write("### Query Result:")
|
146 |
+
st.write("\n".join(results))
|
147 |
+
|
148 |
+
except Exception as e:
|
149 |
+
st.error(f"Error executing query: {e}")
|