Spaces:
Sleeping
Sleeping
Delete interim/incorrect.py
Browse files- interim/incorrect.py +0 -149
interim/incorrect.py
DELETED
|
@@ -1,149 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import streamlit as st
|
| 3 |
-
import pandas as pd
|
| 4 |
-
from datasets import load_dataset
|
| 5 |
-
import time
|
| 6 |
-
from langchain.agents.agent_types import AgentType
|
| 7 |
-
from langchain_experimental.agents.agent_toolkits import create_csv_agent
|
| 8 |
-
from langchain_openai import ChatOpenAI
|
| 9 |
-
import ast
|
| 10 |
-
|
| 11 |
-
# Streamlit App Title and Description
|
| 12 |
-
st.title("Patent Data Analysis with LangChain")
|
| 13 |
-
st.write("""This app allows you to analyze patent-related datasets interactively using LangChain agents. You can upload datasets, load from Hugging Face, or use a repository directory dataset.""")
|
| 14 |
-
|
| 15 |
-
# Dataset loading without caching to support progress bar
|
| 16 |
-
def load_huggingface_dataset(dataset_name):
|
| 17 |
-
# Initialize progress bar
|
| 18 |
-
progress_bar = st.progress(0)
|
| 19 |
-
try:
|
| 20 |
-
# Incrementally update progress
|
| 21 |
-
progress_bar.progress(10)
|
| 22 |
-
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True)
|
| 23 |
-
progress_bar.progress(50)
|
| 24 |
-
if hasattr(dataset, "to_pandas"):
|
| 25 |
-
df = dataset.to_pandas()
|
| 26 |
-
else:
|
| 27 |
-
df = pd.DataFrame(dataset)
|
| 28 |
-
progress_bar.progress(100) # Final update to 100%
|
| 29 |
-
return df
|
| 30 |
-
except Exception as e:
|
| 31 |
-
progress_bar.progress(0) # Reset progress bar on failure
|
| 32 |
-
raise e
|
| 33 |
-
|
| 34 |
-
def load_uploaded_csv(uploaded_file):
|
| 35 |
-
# Initialize progress bar
|
| 36 |
-
progress_bar = st.progress(0)
|
| 37 |
-
try:
|
| 38 |
-
# Simulate progress
|
| 39 |
-
progress_bar.progress(10)
|
| 40 |
-
time.sleep(1) # Simulate file processing delay
|
| 41 |
-
progress_bar.progress(50)
|
| 42 |
-
df = pd.read_csv(uploaded_file)
|
| 43 |
-
progress_bar.progress(100) # Final update
|
| 44 |
-
return df
|
| 45 |
-
except Exception as e:
|
| 46 |
-
progress_bar.progress(0) # Reset progress bar on failure
|
| 47 |
-
raise e
|
| 48 |
-
|
| 49 |
-
# Dataset selection logic
|
| 50 |
-
def load_dataset_into_session():
|
| 51 |
-
input_option = st.radio(
|
| 52 |
-
"Select Dataset Input:",
|
| 53 |
-
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], index=1, horizontal=True
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
# Option 1: Load dataset from the repo directory
|
| 57 |
-
if input_option == "Use Repo Directory Dataset":
|
| 58 |
-
file_path = "./source/test.csv"
|
| 59 |
-
if st.button("Load Dataset"):
|
| 60 |
-
try:
|
| 61 |
-
with st.spinner("Loading dataset from the repo directory..."):
|
| 62 |
-
st.session_state.df = pd.read_csv(file_path)
|
| 63 |
-
st.success(f"File loaded successfully from '{file_path}'!")
|
| 64 |
-
except Exception as e:
|
| 65 |
-
st.error(f"Error loading dataset from the repo directory: {e}")
|
| 66 |
-
|
| 67 |
-
# Option 2: Load dataset from Hugging Face
|
| 68 |
-
elif input_option == "Use Hugging Face Dataset":
|
| 69 |
-
dataset_name = st.text_input(
|
| 70 |
-
"Enter Hugging Face Dataset Name:", value="HUPD/hupd"
|
| 71 |
-
)
|
| 72 |
-
if st.button("Load Dataset"):
|
| 73 |
-
try:
|
| 74 |
-
st.session_state.df = load_huggingface_dataset(dataset_name)
|
| 75 |
-
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!")
|
| 76 |
-
except Exception as e:
|
| 77 |
-
st.error(f"Error loading Hugging Face dataset: {e}")
|
| 78 |
-
|
| 79 |
-
# Option 3: Upload CSV File
|
| 80 |
-
elif input_option == "Upload CSV File":
|
| 81 |
-
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"])
|
| 82 |
-
if uploaded_file:
|
| 83 |
-
try:
|
| 84 |
-
st.session_state.df = load_uploaded_csv(uploaded_file)
|
| 85 |
-
st.success("File uploaded successfully!")
|
| 86 |
-
except Exception as e:
|
| 87 |
-
st.error(f"Error reading uploaded file: {e}")
|
| 88 |
-
|
| 89 |
-
# Load dataset into session
|
| 90 |
-
load_dataset_into_session()
|
| 91 |
-
|
| 92 |
-
if "df" in st.session_state:
|
| 93 |
-
df = st.session_state.df
|
| 94 |
-
|
| 95 |
-
# Display dataset metadata
|
| 96 |
-
st.write("### Dataset Metadata")
|
| 97 |
-
st.text(f"Number of Rows: {df.shape[0]}")
|
| 98 |
-
st.text(f"Number of Columns: {df.shape[1]}")
|
| 99 |
-
st.text(f"Column Names: {', '.join(df.columns)}")
|
| 100 |
-
|
| 101 |
-
# Display dataset preview
|
| 102 |
-
st.write("### Dataset Preview")
|
| 103 |
-
num_rows = st.slider("Select number of rows to display:", min_value=5, max_value=50, value=10)
|
| 104 |
-
st.dataframe(df.head(num_rows))
|
| 105 |
-
|
| 106 |
-
# Define LangChain CSV Agent
|
| 107 |
-
st.header("Run Queries on Patent Data")
|
| 108 |
-
|
| 109 |
-
with st.spinner("Setting up LangChain CSV Agent..."):
|
| 110 |
-
df.to_csv("patent_data.csv", index=False)
|
| 111 |
-
|
| 112 |
-
csv_agent = create_csv_agent(
|
| 113 |
-
ChatOpenAI(temperature=0, model="gpt-4", api_key=os.getenv("OPENAI_API_KEY")),
|
| 114 |
-
path=["patent_data.csv"],
|
| 115 |
-
verbose=True,
|
| 116 |
-
agent_type=AgentType.OPENAI_FUNCTIONS,
|
| 117 |
-
allow_dangerous_code=True
|
| 118 |
-
)
|
| 119 |
-
|
| 120 |
-
# Query Input and Execution
|
| 121 |
-
query = st.text_area("Enter your natural language query:", "How many patents are related to AI?")
|
| 122 |
-
|
| 123 |
-
if st.button("Run Query"):
|
| 124 |
-
with st.spinner("Running query..."):
|
| 125 |
-
try:
|
| 126 |
-
# Split query execution into smaller chunks if needed
|
| 127 |
-
max_rows = 1000
|
| 128 |
-
total_rows = len(df)
|
| 129 |
-
results = []
|
| 130 |
-
|
| 131 |
-
for start in range(0, total_rows, max_rows):
|
| 132 |
-
chunk = df.iloc[start:start + max_rows]
|
| 133 |
-
chunk.to_csv("chunk_data.csv", index=False)
|
| 134 |
-
partial_agent = create_csv_agent(
|
| 135 |
-
ChatOpenAI(temperature=0, model="gpt-4", api_key=os.getenv("OPENAI_API_KEY")),
|
| 136 |
-
path=["chunk_data.csv"],
|
| 137 |
-
verbose=True,
|
| 138 |
-
agent_type=AgentType.OPENAI_FUNCTIONS,
|
| 139 |
-
allow_dangerous_code=True
|
| 140 |
-
)
|
| 141 |
-
result = partial_agent.invoke(query)
|
| 142 |
-
results.append(result)
|
| 143 |
-
|
| 144 |
-
st.success("Query executed successfully!")
|
| 145 |
-
st.write("### Query Result:")
|
| 146 |
-
st.write("\n".join(results))
|
| 147 |
-
|
| 148 |
-
except Exception as e:
|
| 149 |
-
st.error(f"Error executing query: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|