Delete interim/incorrect.py
Browse files- interim/incorrect.py +0 -149
interim/incorrect.py
DELETED
@@ -1,149 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import streamlit as st
|
3 |
-
import pandas as pd
|
4 |
-
from datasets import load_dataset
|
5 |
-
import time
|
6 |
-
from langchain.agents.agent_types import AgentType
|
7 |
-
from langchain_experimental.agents.agent_toolkits import create_csv_agent
|
8 |
-
from langchain_openai import ChatOpenAI
|
9 |
-
import ast
|
10 |
-
|
11 |
-
# Streamlit App Title and Description
|
12 |
-
st.title("Patent Data Analysis with LangChain")
|
13 |
-
st.write("""This app allows you to analyze patent-related datasets interactively using LangChain agents. You can upload datasets, load from Hugging Face, or use a repository directory dataset.""")
|
14 |
-
|
15 |
-
# Dataset loading without caching to support progress bar
|
16 |
-
def load_huggingface_dataset(dataset_name):
|
17 |
-
# Initialize progress bar
|
18 |
-
progress_bar = st.progress(0)
|
19 |
-
try:
|
20 |
-
# Incrementally update progress
|
21 |
-
progress_bar.progress(10)
|
22 |
-
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True)
|
23 |
-
progress_bar.progress(50)
|
24 |
-
if hasattr(dataset, "to_pandas"):
|
25 |
-
df = dataset.to_pandas()
|
26 |
-
else:
|
27 |
-
df = pd.DataFrame(dataset)
|
28 |
-
progress_bar.progress(100) # Final update to 100%
|
29 |
-
return df
|
30 |
-
except Exception as e:
|
31 |
-
progress_bar.progress(0) # Reset progress bar on failure
|
32 |
-
raise e
|
33 |
-
|
34 |
-
def load_uploaded_csv(uploaded_file):
|
35 |
-
# Initialize progress bar
|
36 |
-
progress_bar = st.progress(0)
|
37 |
-
try:
|
38 |
-
# Simulate progress
|
39 |
-
progress_bar.progress(10)
|
40 |
-
time.sleep(1) # Simulate file processing delay
|
41 |
-
progress_bar.progress(50)
|
42 |
-
df = pd.read_csv(uploaded_file)
|
43 |
-
progress_bar.progress(100) # Final update
|
44 |
-
return df
|
45 |
-
except Exception as e:
|
46 |
-
progress_bar.progress(0) # Reset progress bar on failure
|
47 |
-
raise e
|
48 |
-
|
49 |
-
# Dataset selection logic
|
50 |
-
def load_dataset_into_session():
|
51 |
-
input_option = st.radio(
|
52 |
-
"Select Dataset Input:",
|
53 |
-
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], index=1, horizontal=True
|
54 |
-
)
|
55 |
-
|
56 |
-
# Option 1: Load dataset from the repo directory
|
57 |
-
if input_option == "Use Repo Directory Dataset":
|
58 |
-
file_path = "./source/test.csv"
|
59 |
-
if st.button("Load Dataset"):
|
60 |
-
try:
|
61 |
-
with st.spinner("Loading dataset from the repo directory..."):
|
62 |
-
st.session_state.df = pd.read_csv(file_path)
|
63 |
-
st.success(f"File loaded successfully from '{file_path}'!")
|
64 |
-
except Exception as e:
|
65 |
-
st.error(f"Error loading dataset from the repo directory: {e}")
|
66 |
-
|
67 |
-
# Option 2: Load dataset from Hugging Face
|
68 |
-
elif input_option == "Use Hugging Face Dataset":
|
69 |
-
dataset_name = st.text_input(
|
70 |
-
"Enter Hugging Face Dataset Name:", value="HUPD/hupd"
|
71 |
-
)
|
72 |
-
if st.button("Load Dataset"):
|
73 |
-
try:
|
74 |
-
st.session_state.df = load_huggingface_dataset(dataset_name)
|
75 |
-
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!")
|
76 |
-
except Exception as e:
|
77 |
-
st.error(f"Error loading Hugging Face dataset: {e}")
|
78 |
-
|
79 |
-
# Option 3: Upload CSV File
|
80 |
-
elif input_option == "Upload CSV File":
|
81 |
-
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"])
|
82 |
-
if uploaded_file:
|
83 |
-
try:
|
84 |
-
st.session_state.df = load_uploaded_csv(uploaded_file)
|
85 |
-
st.success("File uploaded successfully!")
|
86 |
-
except Exception as e:
|
87 |
-
st.error(f"Error reading uploaded file: {e}")
|
88 |
-
|
89 |
-
# Load dataset into session
|
90 |
-
load_dataset_into_session()
|
91 |
-
|
92 |
-
if "df" in st.session_state:
|
93 |
-
df = st.session_state.df
|
94 |
-
|
95 |
-
# Display dataset metadata
|
96 |
-
st.write("### Dataset Metadata")
|
97 |
-
st.text(f"Number of Rows: {df.shape[0]}")
|
98 |
-
st.text(f"Number of Columns: {df.shape[1]}")
|
99 |
-
st.text(f"Column Names: {', '.join(df.columns)}")
|
100 |
-
|
101 |
-
# Display dataset preview
|
102 |
-
st.write("### Dataset Preview")
|
103 |
-
num_rows = st.slider("Select number of rows to display:", min_value=5, max_value=50, value=10)
|
104 |
-
st.dataframe(df.head(num_rows))
|
105 |
-
|
106 |
-
# Define LangChain CSV Agent
|
107 |
-
st.header("Run Queries on Patent Data")
|
108 |
-
|
109 |
-
with st.spinner("Setting up LangChain CSV Agent..."):
|
110 |
-
df.to_csv("patent_data.csv", index=False)
|
111 |
-
|
112 |
-
csv_agent = create_csv_agent(
|
113 |
-
ChatOpenAI(temperature=0, model="gpt-4", api_key=os.getenv("OPENAI_API_KEY")),
|
114 |
-
path=["patent_data.csv"],
|
115 |
-
verbose=True,
|
116 |
-
agent_type=AgentType.OPENAI_FUNCTIONS,
|
117 |
-
allow_dangerous_code=True
|
118 |
-
)
|
119 |
-
|
120 |
-
# Query Input and Execution
|
121 |
-
query = st.text_area("Enter your natural language query:", "How many patents are related to AI?")
|
122 |
-
|
123 |
-
if st.button("Run Query"):
|
124 |
-
with st.spinner("Running query..."):
|
125 |
-
try:
|
126 |
-
# Split query execution into smaller chunks if needed
|
127 |
-
max_rows = 1000
|
128 |
-
total_rows = len(df)
|
129 |
-
results = []
|
130 |
-
|
131 |
-
for start in range(0, total_rows, max_rows):
|
132 |
-
chunk = df.iloc[start:start + max_rows]
|
133 |
-
chunk.to_csv("chunk_data.csv", index=False)
|
134 |
-
partial_agent = create_csv_agent(
|
135 |
-
ChatOpenAI(temperature=0, model="gpt-4", api_key=os.getenv("OPENAI_API_KEY")),
|
136 |
-
path=["chunk_data.csv"],
|
137 |
-
verbose=True,
|
138 |
-
agent_type=AgentType.OPENAI_FUNCTIONS,
|
139 |
-
allow_dangerous_code=True
|
140 |
-
)
|
141 |
-
result = partial_agent.invoke(query)
|
142 |
-
results.append(result)
|
143 |
-
|
144 |
-
st.success("Query executed successfully!")
|
145 |
-
st.write("### Query Result:")
|
146 |
-
st.write("\n".join(results))
|
147 |
-
|
148 |
-
except Exception as e:
|
149 |
-
st.error(f"Error executing query: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|