DrishtiSharma commited on
Commit
d647a15
·
verified ·
1 Parent(s): e8ce3b4

Delete app1.py

Browse files
Files changed (1) hide show
  1. app1.py +0 -322
app1.py DELETED
@@ -1,322 +0,0 @@
1
- import os
2
- import requests
3
- import streamlit as st
4
- import pickle
5
- from langchain.chains import LLMChain
6
- from langchain.prompts import PromptTemplate
7
- from langchain_groq import ChatGroq
8
- from langchain.document_loaders import PDFPlumberLoader
9
- from langchain_experimental.text_splitter import SemanticChunker
10
- from langchain_huggingface import HuggingFaceEmbeddings
11
- from langchain_chroma import Chroma
12
- from langchain.chains import SequentialChain, LLMChain
13
-
14
- # Set API Keys
15
- os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
16
-
17
- # Load LLM models
18
- llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
19
- rag_llm = ChatGroq(model="mixtral-8x7b-32768")
20
-
21
- llm_judge.verbose = True
22
- rag_llm.verbose = True
23
-
24
- VECTOR_DB_PATH = "/tmp/chroma_db"
25
- CHUNKS_FILE = "/tmp/chunks.pkl"
26
-
27
- # Session State Initialization
28
- if "vector_store" not in st.session_state:
29
- st.session_state.vector_store = None
30
- if "documents" not in st.session_state:
31
- st.session_state.documents = None
32
- if "pdf_path" not in st.session_state:
33
- st.session_state.pdf_path = None
34
- if "pdf_loaded" not in st.session_state:
35
- st.session_state.pdf_loaded = False
36
- if "chunked" not in st.session_state:
37
- st.session_state.chunked = False
38
- if "vector_created" not in st.session_state:
39
- st.session_state.vector_created = False
40
-
41
- st.title("Blah-2")
42
-
43
- # Step 1: Choose PDF Source
44
- pdf_source = st.radio("Upload or provide a link to a PDF:", ["Enter a PDF URL", "Upload a PDF file"], index=0, horizontal=True)
45
-
46
- if pdf_source == "Upload a PDF file":
47
- uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
48
- if uploaded_file:
49
- st.session_state.pdf_path = "temp.pdf"
50
- with open(st.session_state.pdf_path, "wb") as f:
51
- f.write(uploaded_file.getbuffer())
52
- st.session_state.pdf_loaded = False
53
- st.session_state.chunked = False
54
- st.session_state.vector_created = False
55
-
56
- elif pdf_source == "Enter a PDF URL":
57
- pdf_url = st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998", key="pdf_url", on_change=lambda: st.session_state.update(trigger_download=True))
58
-
59
- # Button OR Enter key will trigger download
60
- if st.button("Download and Process PDF") or st.session_state.get("trigger_download", False):
61
- with st.spinner("Downloading PDF..."):
62
- try:
63
- response = requests.get(pdf_url)
64
- if response.status_code == 200:
65
- st.session_state.pdf_path = "temp.pdf"
66
- with open(st.session_state.pdf_path, "wb") as f:
67
- f.write(response.content)
68
-
69
- # Reset states
70
- st.session_state.pdf_loaded = False
71
- st.session_state.chunked = False
72
- st.session_state.vector_created = False
73
- st.session_state.trigger_download = False # Reset trigger
74
-
75
- st.success("✅ PDF Downloaded Successfully!")
76
- else:
77
- st.error("❌ Failed to download PDF. Check the URL.")
78
- except Exception as e:
79
- st.error(f"❌ Error downloading PDF: {e}")
80
-
81
-
82
- # Step 2: Load & Process PDF (Only Once)
83
- if st.session_state.pdf_path and not st.session_state.pdf_loaded:
84
- with st.spinner("Loading PDF..."):
85
- try:
86
- loader = PDFPlumberLoader(st.session_state.pdf_path)
87
- docs = loader.load()
88
- st.session_state.documents = docs
89
- st.session_state.pdf_loaded = True
90
- st.success(f"✅ **PDF Loaded!** Total Pages: {len(docs)}")
91
- except Exception as e:
92
- st.error(f"❌ Error processing PDF: {e}")
93
-
94
- # Load Cached Chunks if Available
95
- def load_chunks():
96
- if os.path.exists(CHUNKS_FILE):
97
- with open(CHUNKS_FILE, "rb") as f:
98
- return pickle.load(f)
99
- return None
100
-
101
- if not st.session_state.chunked: # Ensure chunking only happens once
102
- cached_chunks = load_chunks()
103
- if cached_chunks:
104
- st.session_state.documents = cached_chunks
105
- st.session_state.chunked = True
106
-
107
- # Step 3: Chunking (Only Happens Once)
108
- if st.session_state.pdf_loaded and not st.session_state.chunked:
109
- with st.spinner("Chunking the document..."):
110
- try:
111
- model_name = "nomic-ai/modernbert-embed-base"
112
- embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'})
113
- text_splitter = SemanticChunker(embedding_model)
114
-
115
- if st.session_state.documents:
116
- documents = text_splitter.split_documents(st.session_state.documents)
117
- st.session_state.documents = documents
118
- st.session_state.chunked = True
119
-
120
- # Save chunks for persistence
121
- with open(CHUNKS_FILE, "wb") as f:
122
- pickle.dump(documents, f)
123
-
124
- st.success(f"✅ **Document Chunked!** Total Chunks: {len(documents)}")
125
- except Exception as e:
126
- st.error(f"❌ Error chunking document: {e}")
127
-
128
- # Step 4: Setup Vectorstore
129
- def load_vector_store():
130
- return Chroma(persist_directory=VECTOR_DB_PATH, collection_name="deepseek_collection", embedding_function=HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base"))
131
-
132
- if st.session_state.chunked and not st.session_state.vector_created:
133
- with st.spinner("Creating vector store..."):
134
- try:
135
- if st.session_state.vector_store is None: # Prevent unnecessary reloading
136
- st.session_state.vector_store = load_vector_store()
137
-
138
- if len(st.session_state.vector_store.get()["documents"]) == 0: # Prevent duplicate insertions
139
- st.session_state.vector_store.add_documents(st.session_state.documents)
140
-
141
- num_documents = len(st.session_state.vector_store.get()["documents"])
142
- st.session_state.vector_created = True
143
- st.success(f"✅ **Vector Store Created!** Total documents stored: {num_documents}")
144
- except Exception as e:
145
- st.error(f"❌ Error creating vector store: {e}")
146
-
147
- # Debugging Logs
148
- #st.write("📄 **PDF Loaded:**", st.session_state.pdf_loaded)
149
- #st.write("🔹 **Chunked:**", st.session_state.chunked)
150
- #st.write("📂 **Vector Store Created:**", st.session_state.vector_created)
151
-
152
-
153
- # ----------------- Query Input -----------------
154
- query = None
155
-
156
- # Check if a valid PDF URL has been entered (but not processed yet)
157
- pdf_url_entered = bool(st.session_state.get("pdf_url")) # Checks if text is in the input box
158
-
159
- # No PDF Provided Yet
160
- if not st.session_state.pdf_path and not pdf_url_entered:
161
- st.info("📥 **Please upload a PDF or enter a valid URL to proceed.**")
162
-
163
- # PDF URL Exists but Not Processed Yet (Only show if URL exists but hasn't been downloaded)
164
- elif pdf_url_entered and not st.session_state.pdf_loaded:
165
- st.warning("⚠️ **PDF URL detected! Click 'Download and Process PDF' to proceed.**")
166
-
167
- # Processing in Progress
168
- elif st.session_state.get("trigger_download", False) and (
169
- not st.session_state.pdf_loaded or not st.session_state.chunked or not st.session_state.vector_created
170
- ):
171
- st.info("⏳ **Processing your document... Please wait.**")
172
-
173
- # ✅ Step 4: Processing Complete, Ready for Questions
174
- elif st.session_state.pdf_loaded and st.session_state.chunked and st.session_state.vector_created:
175
- st.success("🎉 **Processing complete! You can now ask questions.**")
176
- query = st.text_input("🔍 **Ask a question about the document:**")
177
-
178
- if query:
179
- with st.spinner("🔄 Retrieving relevant context..."):
180
- retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3})
181
- contexts = retriever.invoke(query)
182
- # Debugging: Check what was retrieved
183
- st.write("Retrieved Contexts:", contexts)
184
- st.write("Number of Contexts:", len(contexts))
185
-
186
- context = [d.page_content for d in contexts]
187
- # Debugging: Check extracted context
188
- st.write("Extracted Context (page_content):", context)
189
- st.write("Number of Extracted Contexts:", len(context))
190
-
191
- relevancy_prompt = """You are an expert judge tasked with evaluating whether the EACH OF THE CONTEXT provided in the CONTEXT LIST is self sufficient to answer the QUERY asked.
192
- Analyze the provided QUERY AND CONTEXT to determine if each Ccontent in the CONTEXT LIST contains Relevant information to answer the QUERY.
193
-
194
- Guidelines:
195
- 1. The content must not introduce new information beyond what's provided in the QUERY.
196
- 2. Pay close attention to the subject of statements. Ensure that attributes, actions, or dates are correctly associated with the right entities (e.g., a person vs. a TV show they star in).
197
- 3. Be vigilant for subtle misattributions or conflations of information, even if the date or other details are correct.
198
- 4. Check that the content in the CONTEXT LIST doesn't oversimplify or generalize information in a way that changes the meaning of the QUERY.
199
-
200
- Analyze the text thoroughly and assign a relevancy score 0 or 1 where:
201
- - 0: The content has all the necessary information to answer the QUERY
202
- - 1: The content does not has the necessary information to answer the QUERY
203
-
204
- ```
205
- EXAMPLE:
206
- INPUT (for context only, not to be used for faithfulness evaluation):
207
- What is the capital of France?
208
-
209
- CONTEXT:
210
- ['France is a country in Western Europe. Its capital is Paris, which is known for landmarks like the Eiffel Tower.',
211
- 'Mr. Naveen patnaik has been the chief minister of Odisha for consequetive 5 terms']
212
-
213
- OUTPUT:
214
- The Context has sufficient information to answer the query.
215
-
216
- RESPONSE:
217
- {{"score":0}}
218
- ```
219
-
220
- CONTENT LIST:
221
- {context}
222
-
223
- QUERY:
224
- {retriever_query}
225
- Provide your verdict in JSON format with a single key 'score' and no preamble or explanation:
226
- [{{"content:1,"score": <your score either 0 or 1>,"Reasoning":<why you have chose the score as 0 or 1>}},
227
- {{"content:2,"score": <your score either 0 or 1>,"Reasoning":<why you have chose the score as 0 or 1>}},
228
- ...]
229
- """
230
-
231
- context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query","context"],template=relevancy_prompt)
232
-
233
- relevant_prompt = PromptTemplate(
234
- input_variables=["relevancy_response"],
235
- template="""
236
- Your main task is to analyze the json structure as a part of the Relevancy Response.
237
- Review the Relevancy Response and do the following:-
238
- (1) Look at the Json Structure content
239
- (2) Analyze the 'score' key in the Json Structure content.
240
- (3) pick the value of 'content' key against those 'score' key value which has 0.
241
-
242
- Relevancy Response:
243
- {relevancy_response}
244
-
245
- Provide your verdict in JSON format with a single key 'content number' and no preamble or explanation:
246
- [{{"content":<content number>}}]
247
- """
248
- )
249
-
250
- context_prompt = PromptTemplate(
251
- input_variables=["context_number"],
252
- template="""
253
- Your main task is to analyze the json structure as a part of the Context Number Response and the list of Contexts provided in the 'Content List' and perform the following steps:-
254
- (1) Look at the output from the Relevant Context Picker Agent.
255
- (2) Analyze the 'content' key in the Json Structure format({{"content":<<content_number>>}}).
256
- (3) Retrieve the value of 'content' key and pick up the context corresponding to that element from the Content List provided.
257
- (4) Pass the retrieved context for each corresponing element number referred in the 'Context Number Response'
258
-
259
- Context Number Response:
260
- {context_number}
261
-
262
- Content List:
263
- {context}
264
-
265
- Provide your verdict in JSON format with a two key 'relevant_content' and 'context_number' no preamble or explanation:
266
- [{{"context_number":<content1>,"relevant_content":<content corresponing to that element 1 in the Content List>}},
267
- {{"context_number":<content4>,"relevant_content":<content corresponing to that element 4 in the Content List>}},
268
- ...
269
- ]
270
- """
271
- )
272
-
273
- rag_prompt = """ You are a helpful assistant very profiient in formulating clear and meaningful answers from the context provided.Based on the CONTEXT Provided ,Please formulate
274
- a clear concise and meaningful answer for the QUERY asked.Please refrain from making up your own answer in case the COTEXT provided is not sufficient to answer the QUERY.In such a situation please respond as 'I do not know'.
275
-
276
- QUERY:
277
- {query}
278
-
279
- CONTEXT
280
- {context}
281
-
282
- ANSWER:
283
- """
284
-
285
- context_relevancy_evaluation_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response")
286
-
287
- response_crisis = context_relevancy_evaluation_chain.invoke({"context":context,"retriever_query":query})
288
-
289
- pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
290
-
291
- relevant_response = pick_relevant_context_chain.invoke({"relevancy_response":response_crisis['relevancy_response']})
292
-
293
- relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
294
-
295
- contexts = relevant_contexts_chain.invoke({"context_number":relevant_response['context_number'],"context":context})
296
-
297
- final_prompt = PromptTemplate(input_variables=["query","context"],template=rag_prompt)
298
-
299
- response_chain = LLMChain(llm=rag_llm,prompt=final_prompt,output_key="final_response")
300
-
301
- response = response_chain.invoke({"query":query,"context":contexts['relevant_contexts']})
302
-
303
- # Orchestrate using SequentialChain
304
- context_management_chain = SequentialChain(
305
- chains=[context_relevancy_evaluation_chain ,pick_relevant_context_chain, relevant_contexts_chain,response_chain],
306
- input_variables=["context","retriever_query","query"],
307
- output_variables=["relevancy_response", "context_number","relevant_contexts","final_response"]
308
- )
309
-
310
- final_output = context_management_chain({"context":context,"retriever_query":query,"query":query})
311
-
312
- st.subheader('final_output["relevancy_response"]')
313
- st.write(final_output["relevancy_response"] )
314
-
315
- st.subheader('final_output["context_number"]')
316
- st.write(final_output["context_number"])
317
-
318
- st.subheader('final_output["relevant_contexts"]')
319
- st.write(final_output["relevant_contexts"])
320
-
321
- st.subheader('final_output["final_response"]')
322
- st.write(final_output["final_response"])