Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -43,47 +43,35 @@ st.title("Blah-2")
|
|
43 |
# Step 1: Choose PDF Source
|
44 |
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Enter a PDF URL", "Upload a PDF file"], index=0, horizontal=True)
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
with st.spinner("Downloading PDF..."):
|
50 |
try:
|
51 |
-
response = requests.get(
|
52 |
if response.status_code == 200:
|
53 |
st.session_state.pdf_path = "temp.pdf"
|
54 |
with open(st.session_state.pdf_path, "wb") as f:
|
55 |
f.write(response.content)
|
56 |
-
|
57 |
-
# Reset processing state
|
58 |
st.session_state.pdf_loaded = False
|
59 |
st.session_state.chunked = False
|
60 |
st.session_state.vector_created = False
|
61 |
-
|
62 |
st.success("β
PDF Downloaded Successfully!")
|
63 |
else:
|
64 |
st.error("β Failed to download PDF. Check the URL.")
|
65 |
except Exception as e:
|
66 |
st.error(f"β Error downloading PDF: {e}")
|
67 |
|
68 |
-
if pdf_source == "Upload a PDF file":
|
69 |
-
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
|
70 |
-
if uploaded_file:
|
71 |
-
st.session_state.pdf_path = "temp.pdf"
|
72 |
-
with open(st.session_state.pdf_path, "wb") as f:
|
73 |
-
f.write(uploaded_file.getbuffer())
|
74 |
-
st.session_state.pdf_loaded = False
|
75 |
-
st.session_state.chunked = False
|
76 |
-
st.session_state.vector_created = False
|
77 |
-
|
78 |
-
elif pdf_source == "Enter a PDF URL":
|
79 |
-
# β
Text input with Enter support
|
80 |
-
st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998", key="pdf_url", on_change=download_pdf)
|
81 |
-
|
82 |
-
# β
Button support
|
83 |
-
if st.button("Download and Process PDF"):
|
84 |
-
download_pdf()
|
85 |
-
|
86 |
-
|
87 |
# Step 2: Load & Process PDF (Only Once)
|
88 |
if st.session_state.pdf_path and not st.session_state.pdf_loaded:
|
89 |
with st.spinner("Loading PDF..."):
|
@@ -132,17 +120,7 @@ if st.session_state.pdf_loaded and not st.session_state.chunked:
|
|
132 |
|
133 |
# Step 4: Setup Vectorstore
|
134 |
def load_vector_store():
|
135 |
-
|
136 |
-
vector_store = Chroma(
|
137 |
-
persist_directory=VECTOR_DB_PATH,
|
138 |
-
collection_name="deepseek_collection",
|
139 |
-
embedding_function=HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base")
|
140 |
-
)
|
141 |
-
st.success("β
Vector store loaded successfully!")
|
142 |
-
return vector_store
|
143 |
-
except Exception as e:
|
144 |
-
st.error(f"β Failed to load vector store: {e}")
|
145 |
-
return None # Return None if there's an error
|
146 |
|
147 |
if st.session_state.chunked and not st.session_state.vector_created:
|
148 |
with st.spinner("Creating vector store..."):
|
@@ -169,11 +147,7 @@ st.write("π **Vector Store Created:**", st.session_state.vector_created)
|
|
169 |
query = st.text_input("π Ask a question about the document:")
|
170 |
if query:
|
171 |
with st.spinner("π Retrieving relevant context..."):
|
172 |
-
|
173 |
-
st.error("β Vector store is not initialized. Ensure document processing and chunking are completed.")
|
174 |
-
else:
|
175 |
-
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
176 |
-
|
177 |
contexts = retriever.invoke(query)
|
178 |
# Debugging: Check what was retrieved
|
179 |
st.write("Retrieved Contexts:", contexts)
|
|
|
43 |
# Step 1: Choose PDF Source
|
44 |
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Enter a PDF URL", "Upload a PDF file"], index=0, horizontal=True)
|
45 |
|
46 |
+
if pdf_source == "Upload a PDF file":
|
47 |
+
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
|
48 |
+
if uploaded_file:
|
49 |
+
st.session_state.pdf_path = "temp.pdf"
|
50 |
+
with open(st.session_state.pdf_path, "wb") as f:
|
51 |
+
f.write(uploaded_file.getbuffer())
|
52 |
+
st.session_state.pdf_loaded = False
|
53 |
+
st.session_state.chunked = False
|
54 |
+
st.session_state.vector_created = False
|
55 |
+
|
56 |
+
elif pdf_source == "Enter a PDF URL":
|
57 |
+
pdf_url = st.text_input("Enter PDF URL:", value = "https://arxiv.org/pdf/2406.06998")
|
58 |
+
if pdf_url and not st.session_state.pdf_path:
|
59 |
with st.spinner("Downloading PDF..."):
|
60 |
try:
|
61 |
+
response = requests.get(pdf_url)
|
62 |
if response.status_code == 200:
|
63 |
st.session_state.pdf_path = "temp.pdf"
|
64 |
with open(st.session_state.pdf_path, "wb") as f:
|
65 |
f.write(response.content)
|
|
|
|
|
66 |
st.session_state.pdf_loaded = False
|
67 |
st.session_state.chunked = False
|
68 |
st.session_state.vector_created = False
|
|
|
69 |
st.success("β
PDF Downloaded Successfully!")
|
70 |
else:
|
71 |
st.error("β Failed to download PDF. Check the URL.")
|
72 |
except Exception as e:
|
73 |
st.error(f"β Error downloading PDF: {e}")
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
# Step 2: Load & Process PDF (Only Once)
|
76 |
if st.session_state.pdf_path and not st.session_state.pdf_loaded:
|
77 |
with st.spinner("Loading PDF..."):
|
|
|
120 |
|
121 |
# Step 4: Setup Vectorstore
|
122 |
def load_vector_store():
|
123 |
+
return Chroma(persist_directory=VECTOR_DB_PATH, collection_name="deepseek_collection", embedding_function=HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
if st.session_state.chunked and not st.session_state.vector_created:
|
126 |
with st.spinner("Creating vector store..."):
|
|
|
147 |
query = st.text_input("π Ask a question about the document:")
|
148 |
if query:
|
149 |
with st.spinner("π Retrieving relevant context..."):
|
150 |
+
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
|
|
|
|
|
|
|
|
151 |
contexts = retriever.invoke(query)
|
152 |
# Debugging: Check what was retrieved
|
153 |
st.write("Retrieved Contexts:", contexts)
|