DrishtiSharma commited on
Commit
bcd96c3
Β·
verified Β·
1 Parent(s): a22e896

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -42
app.py CHANGED
@@ -43,47 +43,35 @@ st.title("Blah-2")
43
  # Step 1: Choose PDF Source
44
  pdf_source = st.radio("Upload or provide a link to a PDF:", ["Enter a PDF URL", "Upload a PDF file"], index=0, horizontal=True)
45
 
46
- # Function to download and process the PDF
47
- def download_pdf():
48
- if st.session_state.pdf_url and not st.session_state.pdf_path:
 
 
 
 
 
 
 
 
 
 
49
  with st.spinner("Downloading PDF..."):
50
  try:
51
- response = requests.get(st.session_state.pdf_url)
52
  if response.status_code == 200:
53
  st.session_state.pdf_path = "temp.pdf"
54
  with open(st.session_state.pdf_path, "wb") as f:
55
  f.write(response.content)
56
-
57
- # Reset processing state
58
  st.session_state.pdf_loaded = False
59
  st.session_state.chunked = False
60
  st.session_state.vector_created = False
61
-
62
  st.success("βœ… PDF Downloaded Successfully!")
63
  else:
64
  st.error("❌ Failed to download PDF. Check the URL.")
65
  except Exception as e:
66
  st.error(f"❌ Error downloading PDF: {e}")
67
 
68
- if pdf_source == "Upload a PDF file":
69
- uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
70
- if uploaded_file:
71
- st.session_state.pdf_path = "temp.pdf"
72
- with open(st.session_state.pdf_path, "wb") as f:
73
- f.write(uploaded_file.getbuffer())
74
- st.session_state.pdf_loaded = False
75
- st.session_state.chunked = False
76
- st.session_state.vector_created = False
77
-
78
- elif pdf_source == "Enter a PDF URL":
79
- # βœ… Text input with Enter support
80
- st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998", key="pdf_url", on_change=download_pdf)
81
-
82
- # βœ… Button support
83
- if st.button("Download and Process PDF"):
84
- download_pdf()
85
-
86
-
87
  # Step 2: Load & Process PDF (Only Once)
88
  if st.session_state.pdf_path and not st.session_state.pdf_loaded:
89
  with st.spinner("Loading PDF..."):
@@ -132,17 +120,7 @@ if st.session_state.pdf_loaded and not st.session_state.chunked:
132
 
133
  # Step 4: Setup Vectorstore
134
  def load_vector_store():
135
- try:
136
- vector_store = Chroma(
137
- persist_directory=VECTOR_DB_PATH,
138
- collection_name="deepseek_collection",
139
- embedding_function=HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base")
140
- )
141
- st.success("βœ… Vector store loaded successfully!")
142
- return vector_store
143
- except Exception as e:
144
- st.error(f"❌ Failed to load vector store: {e}")
145
- return None # Return None if there's an error
146
 
147
  if st.session_state.chunked and not st.session_state.vector_created:
148
  with st.spinner("Creating vector store..."):
@@ -169,11 +147,7 @@ st.write("πŸ“‚ **Vector Store Created:**", st.session_state.vector_created)
169
  query = st.text_input("πŸ” Ask a question about the document:")
170
  if query:
171
  with st.spinner("πŸ”„ Retrieving relevant context..."):
172
- if st.session_state.vector_store is None:
173
- st.error("❌ Vector store is not initialized. Ensure document processing and chunking are completed.")
174
- else:
175
- retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
176
-
177
  contexts = retriever.invoke(query)
178
  # Debugging: Check what was retrieved
179
  st.write("Retrieved Contexts:", contexts)
 
43
  # Step 1: Choose PDF Source
44
  pdf_source = st.radio("Upload or provide a link to a PDF:", ["Enter a PDF URL", "Upload a PDF file"], index=0, horizontal=True)
45
 
46
+ if pdf_source == "Upload a PDF file":
47
+ uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
48
+ if uploaded_file:
49
+ st.session_state.pdf_path = "temp.pdf"
50
+ with open(st.session_state.pdf_path, "wb") as f:
51
+ f.write(uploaded_file.getbuffer())
52
+ st.session_state.pdf_loaded = False
53
+ st.session_state.chunked = False
54
+ st.session_state.vector_created = False
55
+
56
+ elif pdf_source == "Enter a PDF URL":
57
+ pdf_url = st.text_input("Enter PDF URL:", value = "https://arxiv.org/pdf/2406.06998")
58
+ if pdf_url and not st.session_state.pdf_path:
59
  with st.spinner("Downloading PDF..."):
60
  try:
61
+ response = requests.get(pdf_url)
62
  if response.status_code == 200:
63
  st.session_state.pdf_path = "temp.pdf"
64
  with open(st.session_state.pdf_path, "wb") as f:
65
  f.write(response.content)
 
 
66
  st.session_state.pdf_loaded = False
67
  st.session_state.chunked = False
68
  st.session_state.vector_created = False
 
69
  st.success("βœ… PDF Downloaded Successfully!")
70
  else:
71
  st.error("❌ Failed to download PDF. Check the URL.")
72
  except Exception as e:
73
  st.error(f"❌ Error downloading PDF: {e}")
74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  # Step 2: Load & Process PDF (Only Once)
76
  if st.session_state.pdf_path and not st.session_state.pdf_loaded:
77
  with st.spinner("Loading PDF..."):
 
120
 
121
  # Step 4: Setup Vectorstore
122
  def load_vector_store():
123
+ return Chroma(persist_directory=VECTOR_DB_PATH, collection_name="deepseek_collection", embedding_function=HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base"))
 
 
 
 
 
 
 
 
 
 
124
 
125
  if st.session_state.chunked and not st.session_state.vector_created:
126
  with st.spinner("Creating vector store..."):
 
147
  query = st.text_input("πŸ” Ask a question about the document:")
148
  if query:
149
  with st.spinner("πŸ”„ Retrieving relevant context..."):
150
+ retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
 
 
 
 
151
  contexts = retriever.invoke(query)
152
  # Debugging: Check what was retrieved
153
  st.write("Retrieved Contexts:", contexts)