DrishtiSharma commited on
Commit
a485500
Β·
verified Β·
1 Parent(s): f9f7feb

Create content_key_issue.py

Browse files
Files changed (1) hide show
  1. lab/content_key_issue.py +257 -0
lab/content_key_issue.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import requests
3
+ import streamlit as st
4
+ import pickle
5
+ from langchain.chains import LLMChain
6
+ from langchain.prompts import PromptTemplate
7
+ from langchain_groq import ChatGroq
8
+ from langchain.document_loaders import PDFPlumberLoader
9
+ from langchain_experimental.text_splitter import SemanticChunker
10
+ from langchain_huggingface import HuggingFaceEmbeddings
11
+ from langchain_chroma import Chroma
12
+ from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
13
+
14
+ # Set API Keys
15
+ os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
16
+
17
+ # Load LLM models
18
+ llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
19
+ rag_llm = ChatGroq(model="mixtral-8x7b-32768")
20
+
21
+ llm_judge.verbose = True
22
+ rag_llm.verbose = True
23
+
24
+ VECTOR_DB_PATH = "/tmp/chroma_db"
25
+ CHUNKS_FILE = "/tmp/chunks.pkl"
26
+
27
+ # Session State Initialization
28
+ if "vector_store" not in st.session_state:
29
+ st.session_state.vector_store = None
30
+ if "documents" not in st.session_state:
31
+ st.session_state.documents = None
32
+ if "pdf_path" not in st.session_state:
33
+ st.session_state.pdf_path = None
34
+ if "pdf_loaded" not in st.session_state:
35
+ st.session_state.pdf_loaded = False
36
+ if "chunked" not in st.session_state:
37
+ st.session_state.chunked = False
38
+ if "vector_created" not in st.session_state:
39
+ st.session_state.vector_created = False
40
+
41
+ st.title("Blah-2")
42
+
43
+ # Step 1: Choose PDF Source
44
+ pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
45
+
46
+ if pdf_source == "Upload a PDF file":
47
+ uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
48
+ if uploaded_file:
49
+ st.session_state.pdf_path = "temp.pdf"
50
+ with open(st.session_state.pdf_path, "wb") as f:
51
+ f.write(uploaded_file.getbuffer())
52
+ st.session_state.pdf_loaded = False
53
+ st.session_state.chunked = False
54
+ st.session_state.vector_created = False
55
+
56
+ elif pdf_source == "Enter a PDF URL":
57
+ pdf_url = st.text_input("Enter PDF URL:")
58
+ if pdf_url and not st.session_state.pdf_path:
59
+ with st.spinner("Downloading PDF..."):
60
+ try:
61
+ response = requests.get(pdf_url)
62
+ if response.status_code == 200:
63
+ st.session_state.pdf_path = "temp.pdf"
64
+ with open(st.session_state.pdf_path, "wb") as f:
65
+ f.write(response.content)
66
+ st.session_state.pdf_loaded = False
67
+ st.session_state.chunked = False
68
+ st.session_state.vector_created = False
69
+ st.success("βœ… PDF Downloaded Successfully!")
70
+ else:
71
+ st.error("❌ Failed to download PDF. Check the URL.")
72
+ except Exception as e:
73
+ st.error(f"❌ Error downloading PDF: {e}")
74
+
75
+ # Step 2: Load & Process PDF (Only Once)
76
+ if st.session_state.pdf_path and not st.session_state.pdf_loaded:
77
+ with st.spinner("Loading PDF..."):
78
+ try:
79
+ loader = PDFPlumberLoader(st.session_state.pdf_path)
80
+ docs = loader.load()
81
+ st.session_state.documents = docs
82
+ st.session_state.pdf_loaded = True
83
+ st.success(f"βœ… **PDF Loaded!** Total Pages: {len(docs)}")
84
+ except Exception as e:
85
+ st.error(f"❌ Error processing PDF: {e}")
86
+
87
+ # Load Cached Chunks if Available
88
+ def load_chunks():
89
+ if os.path.exists(CHUNKS_FILE):
90
+ with open(CHUNKS_FILE, "rb") as f:
91
+ return pickle.load(f)
92
+ return None
93
+
94
+ if not st.session_state.chunked: # Ensure chunking only happens once
95
+ cached_chunks = load_chunks()
96
+ if cached_chunks:
97
+ st.session_state.documents = cached_chunks
98
+ st.session_state.chunked = True
99
+
100
+ # Step 3: Chunking (Only Happens Once)
101
+ if st.session_state.pdf_loaded and not st.session_state.chunked:
102
+ with st.spinner("Chunking the document..."):
103
+ try:
104
+ model_name = "nomic-ai/modernbert-embed-base"
105
+ embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'})
106
+ text_splitter = SemanticChunker(embedding_model)
107
+
108
+ if st.session_state.documents:
109
+ documents = text_splitter.split_documents(st.session_state.documents)
110
+ st.session_state.documents = documents
111
+ st.session_state.chunked = True
112
+
113
+ # Save chunks for persistence
114
+ with open(CHUNKS_FILE, "wb") as f:
115
+ pickle.dump(documents, f)
116
+
117
+ st.success(f"βœ… **Document Chunked!** Total Chunks: {len(documents)}")
118
+ except Exception as e:
119
+ st.error(f"❌ Error chunking document: {e}")
120
+
121
+ # Step 4: Setup Vectorstore
122
+ def load_vector_store():
123
+ return Chroma(persist_directory=VECTOR_DB_PATH, collection_name="deepseek_collection", embedding_function=HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base"))
124
+
125
+ if st.session_state.chunked and not st.session_state.vector_created:
126
+ with st.spinner("Creating vector store..."):
127
+ try:
128
+ if st.session_state.vector_store is None: # Prevent unnecessary reloading
129
+ st.session_state.vector_store = load_vector_store()
130
+
131
+ if len(st.session_state.vector_store.get()["documents"]) == 0: # Prevent duplicate insertions
132
+ st.session_state.vector_store.add_documents(st.session_state.documents)
133
+
134
+ num_documents = len(st.session_state.vector_store.get()["documents"])
135
+ st.session_state.vector_created = True
136
+ st.success(f"βœ… **Vector Store Created!** Total documents stored: {num_documents}")
137
+ except Exception as e:
138
+ st.error(f"❌ Error creating vector store: {e}")
139
+
140
+ # Debugging Logs
141
+ st.write("πŸ“„ **PDF Loaded:**", st.session_state.pdf_loaded)
142
+ st.write("πŸ”Ή **Chunked:**", st.session_state.chunked)
143
+ st.write("πŸ“‚ **Vector Store Created:**", st.session_state.vector_created)
144
+
145
+
146
+ # ----------------- Query Input -----------------
147
+ query = st.text_input("πŸ” Ask a question about the document:")
148
+ if query:
149
+ with st.spinner("πŸ”„ Retrieving relevant context..."):
150
+ retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
151
+ contexts = retriever.invoke(query)
152
+ # Debugging: Check what was retrieved
153
+ st.write("Retrieved Contexts:", contexts)
154
+ st.write("Number of Contexts:", len(contexts))
155
+
156
+ context = [d.page_content for d in contexts]
157
+ # Debugging: Check extracted context
158
+ st.write("Extracted Context (page_content):", context)
159
+ st.write("Number of Extracted Contexts:", len(context))
160
+ # ----------------- Run Individual Chains Explicitly -----------------
161
+
162
+ context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query","context"],template=relevancy_prompt)
163
+
164
+ if "context_relevancy_evaluation_chain" in st.session_state:
165
+ del st.session_state["context_relevancy_evaluation_chain"]
166
+
167
+
168
+
169
+ context_relevancy_evaluation_chain = LLMChain( llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query","context"],template=relevancy_prompt), output_key="relevancy_response" )
170
+
171
+ st.write("πŸš€ Debugging Expected Keys for `context_relevancy_evaluation_chain`:")
172
+ st.write(context_relevancy_evaluation_chain.input_keys)
173
+
174
+ response_crisis = context_relevancy_evaluation_chain.invoke({"context":context,"retriever_query":query})
175
+
176
+ relevant_prompt = relevant_prompt = PromptTemplate(input_variables=["relevancy_response"], template= relevant_context_picker_prompt)
177
+
178
+ pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
179
+
180
+ relevant_response = pick_relevant_context_chain.invoke({"relevancy_response":response_crisis['relevancy_response']})
181
+
182
+ context_prompt = PromptTemplate(input_variables=["context_number"],template=response_synth)
183
+
184
+ relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
185
+
186
+ contexts = relevant_contexts_chain.invoke({"context_number":relevant_response['context_number'],"context":context})
187
+
188
+ #temp
189
+ st.subheader("Relevant Contexts")
190
+ st.json(contexts['relevant_contexts'])
191
+
192
+ response_chain = LLMChain(llm=rag_llm,prompt=final_prompt,output_key="final_response")
193
+
194
+
195
+ #temp
196
+ st.subheader("Response Chain")
197
+ st.json(response_chain)
198
+
199
+ #response = chain.invoke({"query":query,"context":contexts['relevant_contexts']})
200
+
201
+ #temp
202
+ #st.subheader("blah response")
203
+ #st.json(response.content)
204
+
205
+ # Orchestrate using SequentialChain
206
+ context_management_chain = SequentialChain(
207
+ chains=[context_relevancy_evaluation_chain ,pick_relevant_context_chain, relevant_contexts_chain,response_chain],
208
+ input_variables=["context","retriever_query","query"],
209
+ output_variables=["relevancy_response", "context_number","relevant_contexts","final_response"]
210
+ )
211
+ final_output = context_management_chain({"context":context,"retriever_query":query,"query":query})
212
+ st.subheader("Final Output from Context Management chain")
213
+ st.json(final_output)
214
+
215
+ st.subheader("Context of Final Output from Context Management chain")
216
+ st.json(final_output['context'])
217
+
218
+ st.header("Relevancy Response")
219
+ st.json(final_output['relevancy_response'])
220
+
221
+ st.subheader("Relevant Context")
222
+ st.json(final_output['relevant_contexts'])
223
+
224
+ response = chain.invoke({"query":query,"context":final_output['relevant_contexts']})
225
+
226
+ st.subheader("Final Response")
227
+ st.json(response.content)
228
+
229
+ # ----------------- Display All Outputs -----------------
230
+ #st.subheader("response_crisis")
231
+ #st.json((response_crisis))
232
+
233
+ #st.subheader("response_crisis['relevancy_response']")
234
+ #st.json((response_crisis['relevancy_response']))
235
+
236
+
237
+
238
+ #st.markdown("### Context Relevancy Evaluation")
239
+ #st.json(response_crisis["relevancy_response"])
240
+
241
+ #st.markdown("### Picked Relevant Contexts")
242
+ #st.json(relevant_response["context_number"])
243
+
244
+ #st.markdown("### Extracted Relevant Contexts")
245
+ #st.json(contexts["relevant_contexts"])
246
+
247
+ #st.subheader("context_relevancy_evaluation_chain Statement")
248
+ #st.json(final_response["relevancy_response"])
249
+
250
+ #st.subheader("pick_relevant_context_chain Statement")
251
+ #st.json(final_response["context_number"])
252
+
253
+ #st.subheader("relevant_contexts_chain Statement")
254
+ #st.json(final_response["relevant_contexts"])
255
+
256
+ #st.subheader("RAG Response Statement")
257
+ #st.json(final_response["final_response"])