Spaces:
Build error
Build error
Update app1.py
Browse files
app1.py
CHANGED
|
@@ -145,16 +145,39 @@ if st.session_state.chunked and not st.session_state.vector_created:
|
|
| 145 |
st.error(f"β Error creating vector store: {e}")
|
| 146 |
|
| 147 |
# Debugging Logs
|
| 148 |
-
st.write("π **PDF Loaded:**", st.session_state.pdf_loaded)
|
| 149 |
-
st.write("πΉ **Chunked:**", st.session_state.chunked)
|
| 150 |
-
st.write("π **Vector Store Created:**", st.session_state.vector_created)
|
| 151 |
|
| 152 |
|
| 153 |
# ----------------- Query Input -----------------
|
| 154 |
-
query =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
if query:
|
| 156 |
with st.spinner("π Retrieving relevant context..."):
|
| 157 |
-
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k":
|
| 158 |
contexts = retriever.invoke(query)
|
| 159 |
# Debugging: Check what was retrieved
|
| 160 |
st.write("Retrieved Contexts:", contexts)
|
|
@@ -227,7 +250,7 @@ if query:
|
|
| 227 |
context_prompt = PromptTemplate(
|
| 228 |
input_variables=["context_number"],
|
| 229 |
template="""
|
| 230 |
-
|
| 231 |
(1) Look at the output from the Relevant Context Picker Agent.
|
| 232 |
(2) Analyze the 'content' key in the Json Structure format({{"content":<<content_number>>}}).
|
| 233 |
(3) Retrieve the value of 'content' key and pick up the context corresponding to that element from the Content List provided.
|
|
@@ -247,7 +270,7 @@ if query:
|
|
| 247 |
"""
|
| 248 |
)
|
| 249 |
|
| 250 |
-
rag_prompt = """ You are
|
| 251 |
a clear concise and meaningful answer for the QUERY asked.Please refrain from making up your own answer in case the COTEXT provided is not sufficient to answer the QUERY.In such a situation please respond as 'I do not know'.
|
| 252 |
|
| 253 |
QUERY:
|
|
|
|
| 145 |
st.error(f"β Error creating vector store: {e}")
|
| 146 |
|
| 147 |
# Debugging Logs
|
| 148 |
+
#st.write("π **PDF Loaded:**", st.session_state.pdf_loaded)
|
| 149 |
+
#st.write("πΉ **Chunked:**", st.session_state.chunked)
|
| 150 |
+
#st.write("π **Vector Store Created:**", st.session_state.vector_created)
|
| 151 |
|
| 152 |
|
| 153 |
# ----------------- Query Input -----------------
|
| 154 |
+
query = None
|
| 155 |
+
|
| 156 |
+
# Check if a valid PDF URL has been entered (but not processed yet)
|
| 157 |
+
pdf_url_entered = bool(st.session_state.get("pdf_url")) # Checks if text is in the input box
|
| 158 |
+
|
| 159 |
+
# No PDF Provided Yet
|
| 160 |
+
if not st.session_state.pdf_path and not pdf_url_entered:
|
| 161 |
+
st.info("π₯ **Please upload a PDF or enter a valid URL to proceed.**")
|
| 162 |
+
|
| 163 |
+
# PDF URL Exists but Not Processed Yet (Only show if URL exists but hasn't been downloaded)
|
| 164 |
+
elif pdf_url_entered and not st.session_state.pdf_loaded:
|
| 165 |
+
st.warning("β οΈ **PDF URL detected! Click 'Download and Process PDF' to proceed.**")
|
| 166 |
+
|
| 167 |
+
# Processing in Progress
|
| 168 |
+
elif st.session_state.get("trigger_download", False) and (
|
| 169 |
+
not st.session_state.pdf_loaded or not st.session_state.chunked or not st.session_state.vector_created
|
| 170 |
+
):
|
| 171 |
+
st.info("β³ **Processing your document... Please wait.**")
|
| 172 |
+
|
| 173 |
+
# β
Step 4: Processing Complete, Ready for Questions
|
| 174 |
+
elif st.session_state.pdf_loaded and st.session_state.chunked and st.session_state.vector_created:
|
| 175 |
+
st.success("π **Processing complete! You can now ask questions.**")
|
| 176 |
+
query = st.text_input("π **Ask a question about the document:**")
|
| 177 |
+
|
| 178 |
if query:
|
| 179 |
with st.spinner("π Retrieving relevant context..."):
|
| 180 |
+
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
| 181 |
contexts = retriever.invoke(query)
|
| 182 |
# Debugging: Check what was retrieved
|
| 183 |
st.write("Retrieved Contexts:", contexts)
|
|
|
|
| 250 |
context_prompt = PromptTemplate(
|
| 251 |
input_variables=["context_number"],
|
| 252 |
template="""
|
| 253 |
+
Your main task is to analyze the json structure as a part of the Context Number Response and the list of Contexts provided in the 'Content List' and perform the following steps:-
|
| 254 |
(1) Look at the output from the Relevant Context Picker Agent.
|
| 255 |
(2) Analyze the 'content' key in the Json Structure format({{"content":<<content_number>>}}).
|
| 256 |
(3) Retrieve the value of 'content' key and pick up the context corresponding to that element from the Content List provided.
|
|
|
|
| 270 |
"""
|
| 271 |
)
|
| 272 |
|
| 273 |
+
rag_prompt = """ You are a helpful assistant very profiient in formulating clear and meaningful answers from the context provided.Based on the CONTEXT Provided ,Please formulate
|
| 274 |
a clear concise and meaningful answer for the QUERY asked.Please refrain from making up your own answer in case the COTEXT provided is not sufficient to answer the QUERY.In such a situation please respond as 'I do not know'.
|
| 275 |
|
| 276 |
QUERY:
|