Spaces:
Build error
Build error
import os | |
import requests | |
import streamlit as st | |
import pickle | |
from langchain.chains import LLMChain | |
from langchain.prompts import PromptTemplate | |
from langchain_groq import ChatGroq | |
from langchain.document_loaders import PDFPlumberLoader | |
from langchain_experimental.text_splitter import SemanticChunker | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_chroma import Chroma | |
from langchain.chains import SequentialChain, LLMChain | |
# Set API Keys | |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") | |
# Load LLM models | |
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b") | |
rag_llm = ChatGroq(model="mixtral-8x7b-32768") | |
llm_judge.verbose = True | |
rag_llm.verbose = True | |
VECTOR_DB_PATH = "/tmp/chroma_db" | |
CHUNKS_FILE = "/tmp/chunks.pkl" | |
# Session State Initialization | |
if "vector_store" not in st.session_state: | |
st.session_state.vector_store = None | |
if "documents" not in st.session_state: | |
st.session_state.documents = None | |
if "pdf_path" not in st.session_state: | |
st.session_state.pdf_path = None | |
if "pdf_loaded" not in st.session_state: | |
st.session_state.pdf_loaded = False | |
if "chunked" not in st.session_state: | |
st.session_state.chunked = False | |
if "vector_created" not in st.session_state: | |
st.session_state.vector_created = False | |
st.title("Blah-2") | |
# Step 1: Choose PDF Source | |
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Enter a PDF URL", "Upload a PDF file"], index=0, horizontal=True) | |
# Function to download and process the PDF | |
def download_pdf(): | |
if st.session_state.pdf_url and not st.session_state.pdf_path: | |
with st.spinner("Downloading PDF..."): | |
try: | |
response = requests.get(st.session_state.pdf_url) | |
if response.status_code == 200: | |
st.session_state.pdf_path = "temp.pdf" | |
with open(st.session_state.pdf_path, "wb") as f: | |
f.write(response.content) | |
# Reset processing state | |
st.session_state.pdf_loaded = False | |
st.session_state.chunked = False | |
st.session_state.vector_created = False | |
st.success("β PDF Downloaded Successfully!") | |
else: | |
st.error("β Failed to download PDF. Check the URL.") | |
except Exception as e: | |
st.error(f"β Error downloading PDF: {e}") | |
if pdf_source == "Upload a PDF file": | |
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf") | |
if uploaded_file: | |
st.session_state.pdf_path = "temp.pdf" | |
with open(st.session_state.pdf_path, "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
st.session_state.pdf_loaded = False | |
st.session_state.chunked = False | |
st.session_state.vector_created = False | |
elif pdf_source == "Enter a PDF URL": | |
# β Text input with Enter support | |
st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998", key="pdf_url", on_change=download_pdf) | |
# β Button support | |
if st.button("Load PDF"): | |
download_pdf() | |
# Step 2: Load & Process PDF (Only Once) | |
if st.session_state.pdf_path and not st.session_state.pdf_loaded: | |
with st.spinner("Loading PDF..."): | |
try: | |
loader = PDFPlumberLoader(st.session_state.pdf_path) | |
docs = loader.load() | |
st.session_state.documents = docs | |
st.session_state.pdf_loaded = True | |
st.success(f"β **PDF Loaded!** Total Pages: {len(docs)}") | |
except Exception as e: | |
st.error(f"β Error processing PDF: {e}") | |
# Load Cached Chunks if Available | |
def load_chunks(): | |
if os.path.exists(CHUNKS_FILE): | |
with open(CHUNKS_FILE, "rb") as f: | |
return pickle.load(f) | |
return None | |
if not st.session_state.chunked: # Ensure chunking only happens once | |
cached_chunks = load_chunks() | |
if cached_chunks: | |
st.session_state.documents = cached_chunks | |
st.session_state.chunked = True | |
# Step 3: Chunking (Only Happens Once) | |
if st.session_state.pdf_loaded and not st.session_state.chunked: | |
with st.spinner("Chunking the document..."): | |
try: | |
model_name = "nomic-ai/modernbert-embed-base" | |
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}) | |
text_splitter = SemanticChunker(embedding_model) | |
if st.session_state.documents: | |
documents = text_splitter.split_documents(st.session_state.documents) | |
st.session_state.documents = documents | |
st.session_state.chunked = True | |
# Save chunks for persistence | |
with open(CHUNKS_FILE, "wb") as f: | |
pickle.dump(documents, f) | |
st.success(f"β **Document Chunked!** Total Chunks: {len(documents)}") | |
except Exception as e: | |
st.error(f"β Error chunking document: {e}") | |
# Step 4: Setup Vectorstore | |
def load_vector_store(): | |
return Chroma(persist_directory=VECTOR_DB_PATH, collection_name="deepseek_collection", embedding_function=HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base")) | |
if st.session_state.chunked and not st.session_state.vector_created: | |
with st.spinner("Creating vector store..."): | |
try: | |
if st.session_state.vector_store is None: # Prevent unnecessary reloading | |
st.session_state.vector_store = load_vector_store() | |
if len(st.session_state.vector_store.get()["documents"]) == 0: # Prevent duplicate insertions | |
st.session_state.vector_store.add_documents(st.session_state.documents) | |
num_documents = len(st.session_state.vector_store.get()["documents"]) | |
st.session_state.vector_created = True | |
st.success(f"β **Vector Store Created!** Total documents stored: {num_documents}") | |
except Exception as e: | |
st.error(f"β Error creating vector store: {e}") | |
# Debugging Logs | |
st.write("π **PDF Loaded:**", st.session_state.pdf_loaded) | |
st.write("πΉ **Chunked:**", st.session_state.chunked) | |
st.write("π **Vector Store Created:**", st.session_state.vector_created) | |
# ----------------- Query Input ----------------- | |
query = st.text_input("π Ask a question about the document:") | |
if query: | |
with st.spinner("π Retrieving relevant context..."): | |
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5}) | |
contexts = retriever.invoke(query) | |
# Debugging: Check what was retrieved | |
st.write("Retrieved Contexts:", contexts) | |
st.write("Number of Contexts:", len(contexts)) | |
context = [d.page_content for d in contexts] | |
# Debugging: Check extracted context | |
st.write("Extracted Context (page_content):", context) | |
st.write("Number of Extracted Contexts:", len(context)) | |
relevancy_prompt = """You are an expert judge tasked with evaluating whether the EACH OF THE CONTEXT provided in the CONTEXT LIST is self sufficient to answer the QUERY asked. | |
Analyze the provided QUERY AND CONTEXT to determine if each Ccontent in the CONTEXT LIST contains Relevant information to answer the QUERY. | |
Guidelines: | |
1. The content must not introduce new information beyond what's provided in the QUERY. | |
2. Pay close attention to the subject of statements. Ensure that attributes, actions, or dates are correctly associated with the right entities (e.g., a person vs. a TV show they star in). | |
3. Be vigilant for subtle misattributions or conflations of information, even if the date or other details are correct. | |
4. Check that the content in the CONTEXT LIST doesn't oversimplify or generalize information in a way that changes the meaning of the QUERY. | |
Analyze the text thoroughly and assign a relevancy score 0 or 1 where: | |
- 0: The content has all the necessary information to answer the QUERY | |
- 1: The content does not has the necessary information to answer the QUERY | |
``` | |
EXAMPLE: | |
INPUT (for context only, not to be used for faithfulness evaluation): | |
What is the capital of France? | |
CONTEXT: | |
['France is a country in Western Europe. Its capital is Paris, which is known for landmarks like the Eiffel Tower.', | |
'Mr. Naveen patnaik has been the chief minister of Odisha for consequetive 5 terms'] | |
OUTPUT: | |
The Context has sufficient information to answer the query. | |
RESPONSE: | |
{{"score":0}} | |
``` | |
CONTENT LIST: | |
{context} | |
QUERY: | |
{retriever_query} | |
Provide your verdict in JSON format with a single key 'score' and no preamble or explanation: | |
[{{"content:1,"score": <your score either 0 or 1>,"Reasoning":<why you have chose the score as 0 or 1>}}, | |
{{"content:2,"score": <your score either 0 or 1>,"Reasoning":<why you have chose the score as 0 or 1>}}, | |
...] | |
""" | |
context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query","context"],template=relevancy_prompt) | |
relevant_prompt = PromptTemplate( | |
input_variables=["relevancy_response"], | |
template=""" | |
Your main task is to analyze the json structure as a part of the Relevancy Response. | |
Review the Relevancy Response and do the following:- | |
(1) Look at the Json Structure content | |
(2) Analyze the 'score' key in the Json Structure content. | |
(3) pick the value of 'content' key against those 'score' key value which has 0. | |
Relevancy Response: | |
{relevancy_response} | |
Provide your verdict in JSON format with a single key 'content number' and no preamble or explanation: | |
[{{"content":<content number>}}] | |
""" | |
) | |
context_prompt = PromptTemplate( | |
input_variables=["context_number"], | |
template=""" | |
You main task is to analyze the json structure as a part of the Context Number Response and the list of Contexts provided in the 'Content List' and perform the following steps:- | |
(1) Look at the output from the Relevant Context Picker Agent. | |
(2) Analyze the 'content' key in the Json Structure format({{"content":<<content_number>>}}). | |
(3) Retrieve the value of 'content' key and pick up the context corresponding to that element from the Content List provided. | |
(4) Pass the retrieved context for each corresponing element number referred in the 'Context Number Response' | |
Context Number Response: | |
{context_number} | |
Content List: | |
{context} | |
Provide your verdict in JSON format with a two key 'relevant_content' and 'context_number' no preamble or explanation: | |
[{{"context_number":<content1>,"relevant_content":<content corresponing to that element 1 in the Content List>}}, | |
{{"context_number":<content4>,"relevant_content":<content corresponing to that element 4 in the Content List>}}, | |
... | |
] | |
""" | |
) | |
rag_prompt = """ You are ahelpful assistant very profiient in formulating clear and meaningful answers from the context provided.Based on the CONTEXT Provided ,Please formulate | |
a clear concise and meaningful answer for the QUERY asked.Please refrain from making up your own answer in case the COTEXT provided is not sufficient to answer the QUERY.In such a situation please respond as 'I do not know'. | |
QUERY: | |
{query} | |
CONTEXT | |
{context} | |
ANSWER: | |
""" | |
context_relevancy_evaluation_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response") | |
response_crisis = context_relevancy_evaluation_chain.invoke({"context":context,"retriever_query":query}) | |
pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number") | |
relevant_response = pick_relevant_context_chain.invoke({"relevancy_response":response_crisis['relevancy_response']}) | |
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts") | |
contexts = relevant_contexts_chain.invoke({"context_number":relevant_response['context_number'],"context":context}) | |
final_prompt = PromptTemplate(input_variables=["query","context"],template=rag_prompt) | |
response_chain = LLMChain(llm=rag_llm,prompt=final_prompt,output_key="final_response") | |
response = response_chain.invoke({"query":query,"context":contexts['relevant_contexts']}) | |
# Orchestrate using SequentialChain | |
context_management_chain = SequentialChain( | |
chains=[context_relevancy_evaluation_chain ,pick_relevant_context_chain, relevant_contexts_chain,response_chain], | |
input_variables=["context","retriever_query","query"], | |
output_variables=["relevancy_response", "context_number","relevant_contexts","final_response"] | |
) | |
final_output = context_management_chain({"context":context,"retriever_query":query,"query":query}) | |
st.subheader('final_output["relevancy_response"]') | |
st.json(final_output["relevancy_response"] ) | |
st.subheader('final_output["context_number"]') | |
st.json(final_output["context_number"]) | |
st.subheader('final_output["relevant_contexts"]') | |
st.json(final_output["relevant_contexts"]) | |
st.subheader('final_output["final_response"]') | |
st.json(final_output["final_response"]) | |