Spaces:
Build error
Build error
import streamlit as st | |
import os | |
import requests | |
import chromadb | |
from langchain.document_loaders import PDFPlumberLoader | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_experimental.text_splitter import SemanticChunker | |
from langchain_chroma import Chroma | |
from langchain.chains import LLMChain, SequentialChain | |
from langchain.prompts import PromptTemplate | |
from langchain_groq import ChatGroq | |
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth | |
# ----------------- Streamlit UI Setup ----------------- | |
st.set_page_config(page_title="Blah", layout="centered") | |
st.title("Blah-1") | |
# ----------------- API Keys ----------------- | |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") | |
# ----------------- Clear ChromaDB Cache ----------------- | |
chromadb.api.client.SharedSystemClient.clear_system_cache() | |
# ----------------- Initialize Session State ----------------- | |
if "pdf_loaded" not in st.session_state: | |
st.session_state.pdf_loaded = False | |
if "chunked" not in st.session_state: | |
st.session_state.chunked = False | |
if "vector_created" not in st.session_state: | |
st.session_state.vector_created = False | |
if "processed_chunks" not in st.session_state: | |
st.session_state.processed_chunks = None | |
if "vector_store" not in st.session_state: | |
st.session_state.vector_store = None | |
# ----------------- Load Models ----------------- | |
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b") | |
rag_llm = ChatGroq(model="mixtral-8x7b-32768") | |
# Enable verbose logging for debugging | |
llm_judge.verbose = True | |
rag_llm.verbose = True | |
# ----------------- PDF Selection ----------------- | |
#st.subheader("PDF Selection") | |
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True) | |
if pdf_source == "Upload a PDF file": | |
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"]) | |
if uploaded_file: | |
st.session_state.pdf_path = "temp.pdf" | |
with open(st.session_state.pdf_path, "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
st.session_state.pdf_loaded = False | |
st.session_state.chunked = False | |
st.session_state.vector_created = False | |
elif pdf_source == "Enter a PDF URL": | |
pdf_url = st.text_input("Enter PDF URL:") | |
if pdf_url and not st.session_state.pdf_loaded: | |
with st.spinner("π Downloading PDF..."): | |
try: | |
response = requests.get(pdf_url) | |
if response.status_code == 200: | |
st.session_state.pdf_path = "temp.pdf" | |
with open(st.session_state.pdf_path, "wb") as f: | |
f.write(response.content) | |
st.session_state.pdf_loaded = False | |
st.session_state.chunked = False | |
st.session_state.vector_created = False | |
st.success("β PDF Downloaded Successfully!") | |
else: | |
st.error("β Failed to download PDF. Check the URL.") | |
except Exception as e: | |
st.error(f"Error downloading PDF: {e}") | |
# ----------------- Process PDF ----------------- | |
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state: | |
with st.spinner("π Processing document... Please wait."): | |
loader = PDFPlumberLoader(st.session_state.pdf_path) | |
docs = loader.load() | |
st.json(docs[0].metadata) | |
# Embedding Model | |
model_name = "nomic-ai/modernbert-embed-base" | |
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs = {'normalize_embeddings': False}) | |
# Prevent unnecessary re-chunking | |
if not st.session_state.chunked: | |
text_splitter = SemanticChunker(embedding_model) | |
document_chunks = text_splitter.split_documents(docs) | |
st.session_state.processed_chunks = document_chunks | |
st.session_state.chunked = True | |
st.session_state.pdf_loaded = True | |
st.success("β Document processed and chunked successfully!") | |
# ----------------- Setup Vector Store ----------------- | |
if not st.session_state.vector_created and st.session_state.processed_chunks: | |
with st.spinner("π Initializing Vector Store..."): | |
st.session_state.vector_store = Chroma( | |
collection_name="deepseek_collection", | |
collection_metadata={"hnsw:space": "cosine"}, | |
embedding_function=embedding_model | |
) | |
st.session_state.vector_store.add_documents(st.session_state.processed_chunks) | |
st.session_state.vector_created = True | |
st.success("β Vector store initialized successfully!") | |
# ----------------- Query Input ----------------- | |
query = st.text_input("π Ask a question about the document:") | |
if query: | |
with st.spinner("π Retrieving relevant context..."): | |
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5}) | |
retrieved_docs = retriever.invoke(query) | |
context = [d.page_content for d in retrieved_docs] | |
st.success("β Context retrieved successfully!") | |
# ----------------- Run Individual Chains Explicitly ----------------- | |
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response") | |
relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number") | |
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts") | |
response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response") | |
response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query}) | |
relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]}) | |
contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context}) | |
final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]}) | |
# ----------------- Display All Outputs ----------------- | |
st.markdown("### π₯ Context Relevancy Evaluation") | |
st.json(response_crisis["relevancy_response"]) | |
st.markdown("### π¦ Picked Relevant Contexts") | |
st.json(relevant_response["context_number"]) | |
st.markdown("### π₯ Extracted Relevant Contexts") | |
st.json(contexts["relevant_contexts"]) | |
st.markdown("## π₯ RAG Final Response") | |
st.write(final_response["final_response"]) | |
st.text("\n-------- π₯ context_relevancy_evaluation_chain Statement π₯ --------\n") | |
st.json(final_response["relevancy_response"]) | |
st.text("\n-------- π¦ pick_relevant_context_chain Statement π¦ --------\n") | |
st.json(final_response["context_number"]) | |
st.text("\n-------- π₯ relevant_contexts_chain Statement π₯ --------\n") | |
st.json(final_response["relevant_contexts"]) | |
st.text("\n-------- π₯ Rag Response Statement π₯ --------\n") | |
st.json(final_response["final_response"]) | |