Spaces:
Build error
Build error
import os | |
import requests | |
import streamlit as st | |
from langchain.chains import SequentialChain, LLMChain | |
from langchain.prompts import PromptTemplate | |
from langchain_groq import ChatGroq | |
from langchain.document_loaders import PDFPlumberLoader | |
from langchain_experimental.text_splitter import SemanticChunker | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_chroma import Chroma | |
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth | |
# Set API Keys | |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") | |
# Load LLM models | |
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b") | |
rag_llm = ChatGroq(model="mixtral-8x7b-32768") | |
llm_judge.verbose = True | |
rag_llm.verbose = True | |
st.title("β") | |
# Step 1: Choose PDF Source | |
#### Initialize pdf_path | |
pdf_path = None | |
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True) | |
if pdf_source == "Upload a PDF file": | |
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf") | |
if uploaded_file: | |
with open("temp.pdf", "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
pdf_path = "temp.pdf" | |
elif pdf_source == "Enter a PDF URL": | |
pdf_url = st.text_input("Enter PDF URL:") | |
if pdf_url: | |
with st.spinner("Downloading PDF..."): | |
try: | |
response = requests.get(pdf_url) | |
if response.status_code == 200: | |
with open("temp.pdf", "wb") as f: | |
f.write(response.content) | |
pdf_path = "temp.pdf" | |
st.success("β PDF Downloaded Successfully!") | |
else: | |
st.error("β Failed to download PDF. Check the URL.") | |
pdf_path = None | |
except Exception as e: | |
st.error(f"Error downloading PDF: {e}") | |
pdf_path = None | |
else: | |
pdf_path = None | |
# Step 2: Process PDF | |
if pdf_path: | |
with st.spinner("Loading PDF..."): | |
loader = PDFPlumberLoader(pdf_path) | |
docs = loader.load() | |
st.success(f"β **PDF Loaded!** Total Pages: {len(docs)}") | |
# Step 3: Chunking | |
with st.spinner("Chunking the document..."): | |
model_name = "nomic-ai/modernbert-embed-base" | |
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}) | |
text_splitter = SemanticChunker(embedding_model) | |
documents = text_splitter.split_documents(docs) | |
st.success(f"β **Document Chunked!** Total Chunks: {len(documents)}") | |
# Step 4: Setup Vectorstore | |
with st.spinner("Creating vector store..."): | |
vector_store = Chroma( | |
collection_name="deepseek_collection", | |
collection_metadata={"hnsw:space": "cosine"}, | |
embedding_function=embedding_model | |
) | |
vector_store.add_documents(documents) | |
num_documents = len(vector_store.get()["documents"]) | |
st.success(f"β **Vector Store Created!** Total documents stored: {num_documents}") | |
# Step 5: Query Input | |
query = st.text_input("π Enter a Query:") | |
if query: | |
with st.spinner("Retrieving relevant contexts..."): | |
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5}) | |
contexts = retriever.invoke(query) | |
context_texts = [doc.page_content for doc in contexts] | |
st.success(f"β **Retrieved {len(context_texts)} Contexts!**") | |
for i, text in enumerate(context_texts, 1): | |
st.write(f"**Context {i}:** {text[:500]}...") | |
# Step 6: Context Relevancy Checker | |
with st.spinner("Evaluating context relevancy..."): | |
context_relevancy_checker_prompt = PromptTemplate( | |
input_variables=["retriever_query", "context"], template=relevancy_prompt | |
) | |
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response") | |
relevancy_response = context_relevancy_chain.invoke({"context": context_texts, "retriever_query": query}) | |
st.subheader("π₯ Context Relevancy Evaluation") | |
st.json(relevancy_response['relevancy_response']) | |
# Step 7: Selecting Relevant Contexts | |
with st.spinner("Selecting the most relevant contexts..."): | |
relevant_prompt = PromptTemplate( | |
input_variables=["relevancy_response"], template=relevant_context_picker_prompt | |
) | |
pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number") | |
relevant_response = pick_relevant_context_chain.invoke({"relevancy_response": relevancy_response['relevancy_response']}) | |
st.subheader("π¦ Pick Relevant Context Chain") | |
st.json(relevant_response['context_number']) | |
# Step 8: Retrieving Context for Response Generation | |
with st.spinner("Retrieving final context..."): | |
context_prompt = PromptTemplate( | |
input_variables=["context_number", "context"], template=response_synth | |
) | |
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts") | |
final_contexts = relevant_contexts_chain.invoke({"context_number": relevant_response['context_number'], "context": context_texts}) | |
st.subheader("π₯ Relevant Contexts Extracted") | |
st.json(final_contexts['relevant_contexts']) | |
# Step 9: Generate Final Response | |
with st.spinner("Generating the final answer..."): | |
final_prompt = PromptTemplate( | |
input_variables=["query", "context"], template=rag_prompt | |
) | |
response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response") | |
final_response = response_chain.invoke({"query": query, "context": final_contexts['relevant_contexts']}) | |
st.subheader("π₯ RAG Final Response") | |
st.success(final_response['final_response']) | |
# Step 10: Display Workflow Breakdown | |
st.subheader("π **Workflow Breakdown:**") | |
st.json({ | |
"Context Relevancy Evaluation": relevancy_response["relevancy_response"], | |
"Relevant Contexts": relevant_response["context_number"], | |
"Extracted Contexts": final_contexts["relevant_contexts"], | |
"Final Answer": final_response["final_response"] | |
}) |