Create impressive.py
Browse files- lab/impressive.py +183 -0
lab/impressive.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
from pandasai import SmartDataframe
|
5 |
+
from pandasai.llm import OpenAI
|
6 |
+
import tempfile
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from datasets import load_dataset
|
9 |
+
from langchain_groq import ChatGroq
|
10 |
+
from langchain_openai import ChatOpenAI
|
11 |
+
import time
|
12 |
+
|
13 |
+
# Load environment variables
|
14 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
15 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
16 |
+
|
17 |
+
st.title("Chat with Patent Dataset Using PandasAI")
|
18 |
+
|
19 |
+
# Initialize the LLM based on user selection
|
20 |
+
def initialize_llm(model_choice):
|
21 |
+
if model_choice == "llama-3.3-70b":
|
22 |
+
if not groq_api_key:
|
23 |
+
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
|
24 |
+
return None
|
25 |
+
return ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
|
26 |
+
elif model_choice == "GPT-4o":
|
27 |
+
if not openai_api_key:
|
28 |
+
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
|
29 |
+
return None
|
30 |
+
return ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
|
31 |
+
|
32 |
+
# Select LLM model
|
33 |
+
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
|
34 |
+
llm = initialize_llm(model_choice)
|
35 |
+
|
36 |
+
# Dataset loading without caching to support progress bar
|
37 |
+
def load_huggingface_dataset(dataset_name):
|
38 |
+
# Initialize progress bar
|
39 |
+
progress_bar = st.progress(0)
|
40 |
+
try:
|
41 |
+
# Incrementally update progress
|
42 |
+
progress_bar.progress(10)
|
43 |
+
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True)
|
44 |
+
progress_bar.progress(50)
|
45 |
+
if hasattr(dataset, "to_pandas"):
|
46 |
+
df = dataset.to_pandas()
|
47 |
+
else:
|
48 |
+
df = pd.DataFrame(dataset)
|
49 |
+
progress_bar.progress(100) # Final update to 100%
|
50 |
+
return df
|
51 |
+
except Exception as e:
|
52 |
+
progress_bar.progress(0) # Reset progress bar on failure
|
53 |
+
raise e
|
54 |
+
|
55 |
+
def load_uploaded_csv(uploaded_file):
|
56 |
+
# Initialize progress bar
|
57 |
+
progress_bar = st.progress(0)
|
58 |
+
try:
|
59 |
+
# Simulate progress
|
60 |
+
progress_bar.progress(10)
|
61 |
+
time.sleep(1) # Simulate file processing delay
|
62 |
+
progress_bar.progress(50)
|
63 |
+
df = pd.read_csv(uploaded_file)
|
64 |
+
progress_bar.progress(100) # Final update
|
65 |
+
return df
|
66 |
+
except Exception as e:
|
67 |
+
progress_bar.progress(0) # Reset progress bar on failure
|
68 |
+
raise e
|
69 |
+
|
70 |
+
# Dataset selection logic
|
71 |
+
def load_dataset_into_session():
|
72 |
+
input_option = st.radio(
|
73 |
+
"Select Dataset Input:",
|
74 |
+
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], index=1, horizontal=True
|
75 |
+
)
|
76 |
+
|
77 |
+
# Option 1: Load dataset from the repo directory
|
78 |
+
if input_option == "Use Repo Directory Dataset":
|
79 |
+
file_path = "./source/test.csv"
|
80 |
+
if st.button("Load Dataset"):
|
81 |
+
try:
|
82 |
+
with st.spinner("Loading dataset from the repo directory..."):
|
83 |
+
st.session_state.df = pd.read_csv(file_path)
|
84 |
+
st.success(f"File loaded successfully from '{file_path}'!")
|
85 |
+
except Exception as e:
|
86 |
+
st.error(f"Error loading dataset from the repo directory: {e}")
|
87 |
+
|
88 |
+
# Option 2: Load dataset from Hugging Face
|
89 |
+
elif input_option == "Use Hugging Face Dataset":
|
90 |
+
dataset_name = st.text_input(
|
91 |
+
"Enter Hugging Face Dataset Name:", value="HUPD/hupd"
|
92 |
+
)
|
93 |
+
if st.button("Load Dataset"):
|
94 |
+
try:
|
95 |
+
st.session_state.df = load_huggingface_dataset(dataset_name)
|
96 |
+
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!")
|
97 |
+
except Exception as e:
|
98 |
+
st.error(f"Error loading Hugging Face dataset: {e}")
|
99 |
+
|
100 |
+
# Option 3: Upload CSV File
|
101 |
+
elif input_option == "Upload CSV File":
|
102 |
+
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"])
|
103 |
+
if uploaded_file:
|
104 |
+
try:
|
105 |
+
st.session_state.df = load_uploaded_csv(uploaded_file)
|
106 |
+
st.success("File uploaded successfully!")
|
107 |
+
except Exception as e:
|
108 |
+
st.error(f"Error reading uploaded file: {e}")
|
109 |
+
|
110 |
+
# Load dataset into session
|
111 |
+
load_dataset_into_session()
|
112 |
+
|
113 |
+
if "df" in st.session_state and llm:
|
114 |
+
df = st.session_state.df
|
115 |
+
|
116 |
+
# Display dataset metadata
|
117 |
+
st.write("### Dataset Metadata")
|
118 |
+
st.text(f"Number of Rows: {df.shape[0]}")
|
119 |
+
st.text(f"Number of Columns: {df.shape[1]}")
|
120 |
+
st.text(f"Column Names: {', '.join(df.columns)}")
|
121 |
+
|
122 |
+
# Display dataset preview
|
123 |
+
st.write("### Dataset Preview")
|
124 |
+
num_rows = st.slider("Select number of rows to display:", min_value=5, max_value=50, value=10)
|
125 |
+
st.dataframe(df.head(num_rows))
|
126 |
+
|
127 |
+
# Create SmartDataFrame
|
128 |
+
chat_df = SmartDataframe(df, config={"llm": llm})
|
129 |
+
|
130 |
+
# Chat functionality
|
131 |
+
st.write("### Chat with Your Patent Data")
|
132 |
+
user_query = st.text_input("Enter your question about the patent data (e.g., 'Predict if the patent will be accepted.'):")
|
133 |
+
|
134 |
+
if user_query:
|
135 |
+
try:
|
136 |
+
response = chat_df.chat(user_query)
|
137 |
+
st.success(f"Response: {response}")
|
138 |
+
except Exception as e:
|
139 |
+
st.error(f"Error: {e}")
|
140 |
+
|
141 |
+
# Plot generation functionality
|
142 |
+
st.write("### Generate and View Graphs")
|
143 |
+
plot_query = st.text_input("Enter a query to generate a graph (e.g., 'Plot the number of patents by filing year.'):")
|
144 |
+
|
145 |
+
if plot_query:
|
146 |
+
try:
|
147 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
148 |
+
# PandasAI can handle plotting
|
149 |
+
chat_df.chat(plot_query)
|
150 |
+
|
151 |
+
# Save and display the plot
|
152 |
+
temp_plot_path = os.path.join(temp_dir, "plot.png")
|
153 |
+
plt.savefig(temp_plot_path)
|
154 |
+
st.image(temp_plot_path, caption="Generated Plot", use_container_width=True)
|
155 |
+
|
156 |
+
except Exception as e:
|
157 |
+
st.error(f"Error: {e}")
|
158 |
+
|
159 |
+
# Download processed dataset
|
160 |
+
st.write("### Download Processed Dataset")
|
161 |
+
st.download_button(
|
162 |
+
label="Download Dataset as CSV",
|
163 |
+
data=df.to_csv(index=False),
|
164 |
+
file_name="processed_dataset.csv",
|
165 |
+
mime="text/csv"
|
166 |
+
)
|
167 |
+
|
168 |
+
# Sidebar instructions
|
169 |
+
with st.sidebar:
|
170 |
+
st.header("Instructions:")
|
171 |
+
st.markdown(
|
172 |
+
"1. Choose an LLM (Groq-based or OpenAI-based) to interact with the data.\n"
|
173 |
+
"2. Upload, select, or fetch the dataset using the provided options.\n"
|
174 |
+
"3. Enter a query to generate and view graphs based on patent attributes.\n"
|
175 |
+
" - Example: 'Predict if the patent will be accepted.'\n"
|
176 |
+
" - Example: 'What is the primary classification of this patent?'\n"
|
177 |
+
" - Example: 'Summarize the abstract of this patent.'\n"
|
178 |
+
)
|
179 |
+
st.markdown("---")
|
180 |
+
st.header("References:")
|
181 |
+
st.markdown(
|
182 |
+
"1. [Chat With Your CSV File With PandasAI - Prince Krampah](https://medium.com/aimonks/chat-with-your-csv-file-with-pandasai-22232a13c7b7)"
|
183 |
+
)
|