Spaces:
Build error
Build error
Create impressive.py
Browse files- lab/impressive.py +183 -0
lab/impressive.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import os
|
| 4 |
+
from pandasai import SmartDataframe
|
| 5 |
+
from pandasai.llm import OpenAI
|
| 6 |
+
import tempfile
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
from langchain_groq import ChatGroq
|
| 10 |
+
from langchain_openai import ChatOpenAI
|
| 11 |
+
import time
|
| 12 |
+
|
| 13 |
+
# Load environment variables
|
| 14 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
| 15 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 16 |
+
|
| 17 |
+
st.title("Chat with Patent Dataset Using PandasAI")
|
| 18 |
+
|
| 19 |
+
# Initialize the LLM based on user selection
|
| 20 |
+
def initialize_llm(model_choice):
|
| 21 |
+
if model_choice == "llama-3.3-70b":
|
| 22 |
+
if not groq_api_key:
|
| 23 |
+
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
|
| 24 |
+
return None
|
| 25 |
+
return ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
|
| 26 |
+
elif model_choice == "GPT-4o":
|
| 27 |
+
if not openai_api_key:
|
| 28 |
+
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
|
| 29 |
+
return None
|
| 30 |
+
return ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
|
| 31 |
+
|
| 32 |
+
# Select LLM model
|
| 33 |
+
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
|
| 34 |
+
llm = initialize_llm(model_choice)
|
| 35 |
+
|
| 36 |
+
# Dataset loading without caching to support progress bar
|
| 37 |
+
def load_huggingface_dataset(dataset_name):
|
| 38 |
+
# Initialize progress bar
|
| 39 |
+
progress_bar = st.progress(0)
|
| 40 |
+
try:
|
| 41 |
+
# Incrementally update progress
|
| 42 |
+
progress_bar.progress(10)
|
| 43 |
+
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True)
|
| 44 |
+
progress_bar.progress(50)
|
| 45 |
+
if hasattr(dataset, "to_pandas"):
|
| 46 |
+
df = dataset.to_pandas()
|
| 47 |
+
else:
|
| 48 |
+
df = pd.DataFrame(dataset)
|
| 49 |
+
progress_bar.progress(100) # Final update to 100%
|
| 50 |
+
return df
|
| 51 |
+
except Exception as e:
|
| 52 |
+
progress_bar.progress(0) # Reset progress bar on failure
|
| 53 |
+
raise e
|
| 54 |
+
|
| 55 |
+
def load_uploaded_csv(uploaded_file):
|
| 56 |
+
# Initialize progress bar
|
| 57 |
+
progress_bar = st.progress(0)
|
| 58 |
+
try:
|
| 59 |
+
# Simulate progress
|
| 60 |
+
progress_bar.progress(10)
|
| 61 |
+
time.sleep(1) # Simulate file processing delay
|
| 62 |
+
progress_bar.progress(50)
|
| 63 |
+
df = pd.read_csv(uploaded_file)
|
| 64 |
+
progress_bar.progress(100) # Final update
|
| 65 |
+
return df
|
| 66 |
+
except Exception as e:
|
| 67 |
+
progress_bar.progress(0) # Reset progress bar on failure
|
| 68 |
+
raise e
|
| 69 |
+
|
| 70 |
+
# Dataset selection logic
|
| 71 |
+
def load_dataset_into_session():
|
| 72 |
+
input_option = st.radio(
|
| 73 |
+
"Select Dataset Input:",
|
| 74 |
+
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], index=1, horizontal=True
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# Option 1: Load dataset from the repo directory
|
| 78 |
+
if input_option == "Use Repo Directory Dataset":
|
| 79 |
+
file_path = "./source/test.csv"
|
| 80 |
+
if st.button("Load Dataset"):
|
| 81 |
+
try:
|
| 82 |
+
with st.spinner("Loading dataset from the repo directory..."):
|
| 83 |
+
st.session_state.df = pd.read_csv(file_path)
|
| 84 |
+
st.success(f"File loaded successfully from '{file_path}'!")
|
| 85 |
+
except Exception as e:
|
| 86 |
+
st.error(f"Error loading dataset from the repo directory: {e}")
|
| 87 |
+
|
| 88 |
+
# Option 2: Load dataset from Hugging Face
|
| 89 |
+
elif input_option == "Use Hugging Face Dataset":
|
| 90 |
+
dataset_name = st.text_input(
|
| 91 |
+
"Enter Hugging Face Dataset Name:", value="HUPD/hupd"
|
| 92 |
+
)
|
| 93 |
+
if st.button("Load Dataset"):
|
| 94 |
+
try:
|
| 95 |
+
st.session_state.df = load_huggingface_dataset(dataset_name)
|
| 96 |
+
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!")
|
| 97 |
+
except Exception as e:
|
| 98 |
+
st.error(f"Error loading Hugging Face dataset: {e}")
|
| 99 |
+
|
| 100 |
+
# Option 3: Upload CSV File
|
| 101 |
+
elif input_option == "Upload CSV File":
|
| 102 |
+
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"])
|
| 103 |
+
if uploaded_file:
|
| 104 |
+
try:
|
| 105 |
+
st.session_state.df = load_uploaded_csv(uploaded_file)
|
| 106 |
+
st.success("File uploaded successfully!")
|
| 107 |
+
except Exception as e:
|
| 108 |
+
st.error(f"Error reading uploaded file: {e}")
|
| 109 |
+
|
| 110 |
+
# Load dataset into session
|
| 111 |
+
load_dataset_into_session()
|
| 112 |
+
|
| 113 |
+
if "df" in st.session_state and llm:
|
| 114 |
+
df = st.session_state.df
|
| 115 |
+
|
| 116 |
+
# Display dataset metadata
|
| 117 |
+
st.write("### Dataset Metadata")
|
| 118 |
+
st.text(f"Number of Rows: {df.shape[0]}")
|
| 119 |
+
st.text(f"Number of Columns: {df.shape[1]}")
|
| 120 |
+
st.text(f"Column Names: {', '.join(df.columns)}")
|
| 121 |
+
|
| 122 |
+
# Display dataset preview
|
| 123 |
+
st.write("### Dataset Preview")
|
| 124 |
+
num_rows = st.slider("Select number of rows to display:", min_value=5, max_value=50, value=10)
|
| 125 |
+
st.dataframe(df.head(num_rows))
|
| 126 |
+
|
| 127 |
+
# Create SmartDataFrame
|
| 128 |
+
chat_df = SmartDataframe(df, config={"llm": llm})
|
| 129 |
+
|
| 130 |
+
# Chat functionality
|
| 131 |
+
st.write("### Chat with Your Patent Data")
|
| 132 |
+
user_query = st.text_input("Enter your question about the patent data (e.g., 'Predict if the patent will be accepted.'):")
|
| 133 |
+
|
| 134 |
+
if user_query:
|
| 135 |
+
try:
|
| 136 |
+
response = chat_df.chat(user_query)
|
| 137 |
+
st.success(f"Response: {response}")
|
| 138 |
+
except Exception as e:
|
| 139 |
+
st.error(f"Error: {e}")
|
| 140 |
+
|
| 141 |
+
# Plot generation functionality
|
| 142 |
+
st.write("### Generate and View Graphs")
|
| 143 |
+
plot_query = st.text_input("Enter a query to generate a graph (e.g., 'Plot the number of patents by filing year.'):")
|
| 144 |
+
|
| 145 |
+
if plot_query:
|
| 146 |
+
try:
|
| 147 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 148 |
+
# PandasAI can handle plotting
|
| 149 |
+
chat_df.chat(plot_query)
|
| 150 |
+
|
| 151 |
+
# Save and display the plot
|
| 152 |
+
temp_plot_path = os.path.join(temp_dir, "plot.png")
|
| 153 |
+
plt.savefig(temp_plot_path)
|
| 154 |
+
st.image(temp_plot_path, caption="Generated Plot", use_container_width=True)
|
| 155 |
+
|
| 156 |
+
except Exception as e:
|
| 157 |
+
st.error(f"Error: {e}")
|
| 158 |
+
|
| 159 |
+
# Download processed dataset
|
| 160 |
+
st.write("### Download Processed Dataset")
|
| 161 |
+
st.download_button(
|
| 162 |
+
label="Download Dataset as CSV",
|
| 163 |
+
data=df.to_csv(index=False),
|
| 164 |
+
file_name="processed_dataset.csv",
|
| 165 |
+
mime="text/csv"
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
# Sidebar instructions
|
| 169 |
+
with st.sidebar:
|
| 170 |
+
st.header("Instructions:")
|
| 171 |
+
st.markdown(
|
| 172 |
+
"1. Choose an LLM (Groq-based or OpenAI-based) to interact with the data.\n"
|
| 173 |
+
"2. Upload, select, or fetch the dataset using the provided options.\n"
|
| 174 |
+
"3. Enter a query to generate and view graphs based on patent attributes.\n"
|
| 175 |
+
" - Example: 'Predict if the patent will be accepted.'\n"
|
| 176 |
+
" - Example: 'What is the primary classification of this patent?'\n"
|
| 177 |
+
" - Example: 'Summarize the abstract of this patent.'\n"
|
| 178 |
+
)
|
| 179 |
+
st.markdown("---")
|
| 180 |
+
st.header("References:")
|
| 181 |
+
st.markdown(
|
| 182 |
+
"1. [Chat With Your CSV File With PandasAI - Prince Krampah](https://medium.com/aimonks/chat-with-your-csv-file-with-pandasai-22232a13c7b7)"
|
| 183 |
+
)
|