Update app.py
Browse files
app.py
CHANGED
@@ -32,10 +32,27 @@ def initialize_llm(model_choice):
|
|
32 |
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
|
33 |
llm = initialize_llm(model_choice)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def load_dataset_into_session():
|
36 |
input_option = st.radio(
|
37 |
"Select Dataset Input:",
|
38 |
-
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], index=
|
39 |
)
|
40 |
|
41 |
# Option 1: Load dataset from the repo directory
|
@@ -43,7 +60,7 @@ def load_dataset_into_session():
|
|
43 |
file_path = "./source/test.csv"
|
44 |
if st.button("Load Dataset"):
|
45 |
try:
|
46 |
-
st.session_state.df =
|
47 |
st.success(f"File loaded successfully from '{file_path}'!")
|
48 |
except Exception as e:
|
49 |
st.error(f"Error loading dataset from the repo directory: {e}")
|
@@ -55,11 +72,7 @@ def load_dataset_into_session():
|
|
55 |
)
|
56 |
if st.button("Load Dataset"):
|
57 |
try:
|
58 |
-
|
59 |
-
if hasattr(dataset, "to_pandas"):
|
60 |
-
st.session_state.df = dataset.to_pandas()
|
61 |
-
else:
|
62 |
-
st.session_state.df = pd.DataFrame(dataset)
|
63 |
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!")
|
64 |
except Exception as e:
|
65 |
st.error(f"Error loading Hugging Face dataset: {e}")
|
@@ -69,7 +82,7 @@ def load_dataset_into_session():
|
|
69 |
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"])
|
70 |
if uploaded_file:
|
71 |
try:
|
72 |
-
st.session_state.df =
|
73 |
st.success("File uploaded successfully!")
|
74 |
except Exception as e:
|
75 |
st.error(f"Error reading uploaded file: {e}")
|
@@ -79,12 +92,22 @@ load_dataset_into_session()
|
|
79 |
|
80 |
if "df" in st.session_state and llm:
|
81 |
df = st.session_state.df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
st.write("### Dataset Preview")
|
83 |
-
st.
|
|
|
84 |
|
85 |
# Create SmartDataFrame
|
86 |
chat_df = SmartDataframe(df, config={"llm": llm})
|
87 |
|
|
|
88 |
st.write("### Chat with Your Patent Data")
|
89 |
user_query = st.text_input("Enter your question about the patent data (e.g., 'Predict if the patent will be accepted.'):")
|
90 |
|
@@ -95,6 +118,7 @@ if "df" in st.session_state and llm:
|
|
95 |
except Exception as e:
|
96 |
st.error(f"Error: {e}")
|
97 |
|
|
|
98 |
st.write("### Generate and View Graphs")
|
99 |
plot_query = st.text_input("Enter a query to generate a graph (e.g., 'Plot the number of patents by filing year.'):")
|
100 |
|
@@ -112,7 +136,16 @@ if "df" in st.session_state and llm:
|
|
112 |
except Exception as e:
|
113 |
st.error(f"Error: {e}")
|
114 |
|
115 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
with st.sidebar:
|
117 |
st.header("Instructions:")
|
118 |
st.markdown(
|
@@ -123,10 +156,10 @@ with st.sidebar:
|
|
123 |
" - Example: 'What is the primary classification of this patent?'\n"
|
124 |
" - Example: 'Summarize the abstract of this patent.'\n"
|
125 |
"4. Enter a query to generate and view graphs based on patent attributes.\n"
|
|
|
126 |
)
|
127 |
st.markdown("---")
|
128 |
st.header("References:")
|
129 |
st.markdown(
|
130 |
"1. [Chat With Your CSV File With PandasAI - Prince Krampah](https://medium.com/aimonks/chat-with-your-csv-file-with-pandasai-22232a13c7b7)"
|
131 |
)
|
132 |
-
|
|
|
32 |
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
|
33 |
llm = initialize_llm(model_choice)
|
34 |
|
35 |
+
# Cache dataset loading
|
36 |
+
@st.cache_data
|
37 |
+
def load_repo_dataset(file_path):
|
38 |
+
return pd.read_csv(file_path)
|
39 |
+
|
40 |
+
@st.cache_data
|
41 |
+
def load_huggingface_dataset(dataset_name):
|
42 |
+
dataset = load_dataset(dataset_name, name="all", split="train", trust_remote_code=True, uniform_split=True)
|
43 |
+
if hasattr(dataset, "to_pandas"):
|
44 |
+
return dataset.to_pandas()
|
45 |
+
return pd.DataFrame(dataset)
|
46 |
+
|
47 |
+
@st.cache_data
|
48 |
+
def load_uploaded_csv(uploaded_file):
|
49 |
+
return pd.read_csv(uploaded_file)
|
50 |
+
|
51 |
+
# Dataset selection logic
|
52 |
def load_dataset_into_session():
|
53 |
input_option = st.radio(
|
54 |
"Select Dataset Input:",
|
55 |
+
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], index=1, horizontal=True
|
56 |
)
|
57 |
|
58 |
# Option 1: Load dataset from the repo directory
|
|
|
60 |
file_path = "./source/test.csv"
|
61 |
if st.button("Load Dataset"):
|
62 |
try:
|
63 |
+
st.session_state.df = load_repo_dataset(file_path)
|
64 |
st.success(f"File loaded successfully from '{file_path}'!")
|
65 |
except Exception as e:
|
66 |
st.error(f"Error loading dataset from the repo directory: {e}")
|
|
|
72 |
)
|
73 |
if st.button("Load Dataset"):
|
74 |
try:
|
75 |
+
st.session_state.df = load_huggingface_dataset(dataset_name)
|
|
|
|
|
|
|
|
|
76 |
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!")
|
77 |
except Exception as e:
|
78 |
st.error(f"Error loading Hugging Face dataset: {e}")
|
|
|
82 |
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"])
|
83 |
if uploaded_file:
|
84 |
try:
|
85 |
+
st.session_state.df = load_uploaded_csv(uploaded_file)
|
86 |
st.success("File uploaded successfully!")
|
87 |
except Exception as e:
|
88 |
st.error(f"Error reading uploaded file: {e}")
|
|
|
92 |
|
93 |
if "df" in st.session_state and llm:
|
94 |
df = st.session_state.df
|
95 |
+
|
96 |
+
# Display dataset metadata
|
97 |
+
st.write("### Dataset Metadata")
|
98 |
+
st.text(f"Number of Rows: {df.shape[0]}")
|
99 |
+
st.text(f"Number of Columns: {df.shape[1]}")
|
100 |
+
st.text(f"Column Names: {', '.join(df.columns)}")
|
101 |
+
|
102 |
+
# Display dataset preview
|
103 |
st.write("### Dataset Preview")
|
104 |
+
num_rows = st.slider("Select number of rows to display:", min_value=5, max_value=50, value=10)
|
105 |
+
st.dataframe(df.head(num_rows))
|
106 |
|
107 |
# Create SmartDataFrame
|
108 |
chat_df = SmartDataframe(df, config={"llm": llm})
|
109 |
|
110 |
+
# Chat functionality
|
111 |
st.write("### Chat with Your Patent Data")
|
112 |
user_query = st.text_input("Enter your question about the patent data (e.g., 'Predict if the patent will be accepted.'):")
|
113 |
|
|
|
118 |
except Exception as e:
|
119 |
st.error(f"Error: {e}")
|
120 |
|
121 |
+
# Plot generation functionality
|
122 |
st.write("### Generate and View Graphs")
|
123 |
plot_query = st.text_input("Enter a query to generate a graph (e.g., 'Plot the number of patents by filing year.'):")
|
124 |
|
|
|
136 |
except Exception as e:
|
137 |
st.error(f"Error: {e}")
|
138 |
|
139 |
+
# Download processed dataset
|
140 |
+
st.write("### Download Processed Dataset")
|
141 |
+
st.download_button(
|
142 |
+
label="Download Dataset as CSV",
|
143 |
+
data=df.to_csv(index=False),
|
144 |
+
file_name="processed_dataset.csv",
|
145 |
+
mime="text/csv"
|
146 |
+
)
|
147 |
+
|
148 |
+
# Sidebar instructions
|
149 |
with st.sidebar:
|
150 |
st.header("Instructions:")
|
151 |
st.markdown(
|
|
|
156 |
" - Example: 'What is the primary classification of this patent?'\n"
|
157 |
" - Example: 'Summarize the abstract of this patent.'\n"
|
158 |
"4. Enter a query to generate and view graphs based on patent attributes.\n"
|
159 |
+
"5. Download the processed dataset as a CSV file."
|
160 |
)
|
161 |
st.markdown("---")
|
162 |
st.header("References:")
|
163 |
st.markdown(
|
164 |
"1. [Chat With Your CSV File With PandasAI - Prince Krampah](https://medium.com/aimonks/chat-with-your-csv-file-with-pandasai-22232a13c7b7)"
|
165 |
)
|
|