|
import streamlit as st |
|
import pandas as pd |
|
import os |
|
from pandasai import SmartDataframe |
|
from pandasai.llm import OpenAI |
|
import tempfile |
|
import matplotlib.pyplot as plt |
|
from datasets import load_dataset |
|
from langchain_groq import ChatGroq |
|
from langchain_openai import ChatOpenAI |
|
|
|
|
|
openai_api_key = os.getenv("OPENAI_API_KEY") |
|
groq_api_key = os.getenv("GROQ_API_KEY") |
|
|
|
st.title("Chat with Patent Dataset Using PandasAI") |
|
|
|
|
|
def initialize_llm(model_choice): |
|
if model_choice == "llama-3.3-70b": |
|
if not groq_api_key: |
|
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.") |
|
return None |
|
return ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile") |
|
elif model_choice == "GPT-4o": |
|
if not openai_api_key: |
|
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.") |
|
return None |
|
return ChatOpenAI(api_key=openai_api_key, model="gpt-4o") |
|
|
|
|
|
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True) |
|
llm = initialize_llm(model_choice) |
|
|
|
def load_dataset_into_session(): |
|
input_option = st.radio( |
|
"Select Dataset Input:", |
|
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], index=0, horizontal=True |
|
) |
|
|
|
|
|
if input_option == "Use Repo Directory Dataset": |
|
file_path = "./source/test.csv" |
|
if st.button("Load Dataset"): |
|
try: |
|
st.session_state.df = pd.read_csv(file_path) |
|
st.success(f"File loaded successfully from '{file_path}'!") |
|
except Exception as e: |
|
st.error(f"Error loading dataset from the repo directory: {e}") |
|
|
|
|
|
elif input_option == "Use Hugging Face Dataset": |
|
dataset_name = st.text_input( |
|
"Enter Hugging Face Dataset Name:", value="HUPD/hupd" |
|
) |
|
if st.button("Load Hugging Face Dataset"): |
|
try: |
|
dataset = load_dataset(dataset_name, split="train", trust_remote_code=True) |
|
if hasattr(dataset, "to_pandas"): |
|
st.session_state.df = dataset.to_pandas() |
|
else: |
|
st.session_state.df = pd.DataFrame(dataset) |
|
st.session_state.df = validate_and_clean_dataset(st.session_state.df) |
|
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!") |
|
except Exception as e: |
|
st.error(f"Error loading Hugging Face dataset: {e}") |
|
|
|
|
|
elif input_option == "Upload CSV File": |
|
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"]) |
|
if uploaded_file: |
|
try: |
|
st.session_state.df = pd.read_csv(uploaded_file) |
|
st.session_state.df = validate_and_clean_dataset(st.session_state.df) |
|
st.success("File uploaded successfully!") |
|
except Exception as e: |
|
st.error(f"Error reading uploaded file: {e}") |
|
|
|
|
|
load_dataset_into_session() |
|
|
|
if "df" in st.session_state and llm: |
|
df = st.session_state.df |
|
st.write("### Data Preview") |
|
st.dataframe(df.head(10)) |
|
|
|
|
|
chat_df = SmartDataframe(df, config={"llm": llm}) |
|
|
|
st.write("### Chat with Your Patent Data") |
|
user_query = st.text_input("Enter your question about the patent data (e.g., 'Predict if the patent will be accepted.'):") |
|
|
|
if user_query: |
|
try: |
|
response = chat_df.chat(user_query) |
|
st.success(f"Response: {response}") |
|
except Exception as e: |
|
st.error(f"Error: {e}") |
|
|
|
st.write("### Generate and View Graphs") |
|
plot_query = st.text_input("Enter a query to generate a graph (e.g., 'Plot the number of patents by filing year.'):") |
|
|
|
if plot_query: |
|
try: |
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
|
|
chat_df.chat(plot_query) |
|
|
|
|
|
temp_plot_path = os.path.join(temp_dir, "plot.png") |
|
plt.savefig(temp_plot_path) |
|
st.image(temp_plot_path, caption="Generated Plot", use_column_width=True) |
|
|
|
except Exception as e: |
|
st.error(f"Error: {e}") |
|
|
|
|
|
with st.sidebar: |
|
st.header("Instructions") |
|
st.markdown( |
|
"1. Select how you want to input the dataset.\n" |
|
"2. Upload, select, or fetch the dataset using the provided options.\n" |
|
"3. Choose an LLM (Groq-based or OpenAI-based) to interact with the data.\n" |
|
" - Example: 'Predict if the patent will be accepted.'\n" |
|
" - Example: 'What is the primary classification of this patent?'\n" |
|
" - Example: 'Summarize the abstract of this patent.'\n" |
|
"4. Enter a query to generate and view graphs based on patent attributes.\n" |
|
) |
|
st.markdown("---") |
|
st.header("References") |
|
st.markdown( |
|
"1. [Chat With Your CSV File With PandasAI - Prince Krampah](https://medium.com/aimonks/chat-with-your-csv-file-with-pandasai-22232a13c7b7)" |
|
) |
|
|
|
|