# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import importlib.metadata import os import warnings from functools import lru_cache import torch from packaging import version from packaging.version import parse from .environment import parse_flag_from_env, str_to_bool from .versions import compare_versions, is_torch_version # Try to run Torch native job in an environment with TorchXLA installed by setting this value to 0. USE_TORCH_XLA = parse_flag_from_env("USE_TORCH_XLA", default=True) _torch_xla_available = False if USE_TORCH_XLA: try: import torch_xla.core.xla_model as xm # noqa: F401 import torch_xla.runtime _torch_xla_available = True except ImportError: pass # Keep it for is_tpu_available. It will be removed along with is_tpu_available. _tpu_available = _torch_xla_available # Cache this result has it's a C FFI call which can be pretty time-consuming _torch_distributed_available = torch.distributed.is_available() def _is_package_available(pkg_name, metadata_name=None): # Check we're not importing a "pkg_name" directory somewhere but the actual library by trying to grab the version package_exists = importlib.util.find_spec(pkg_name) is not None if package_exists: try: # Some libraries have different names in the metadata _ = importlib.metadata.metadata(pkg_name if metadata_name is None else metadata_name) return True except importlib.metadata.PackageNotFoundError: return False def is_torch_distributed_available() -> bool: return _torch_distributed_available def is_ccl_available(): try: pass except ImportError: print( "Intel(R) oneCCL Bindings for PyTorch* is required to run DDP on Intel(R) GPUs, but it is not" " detected. If you see \"ValueError: Invalid backend: 'ccl'\" error, please install Intel(R) oneCCL" " Bindings for PyTorch*." ) return ( importlib.util.find_spec("torch_ccl") is not None or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None ) def get_ccl_version(): return importlib.metadata.version("oneccl_bind_pt") def is_pynvml_available(): return _is_package_available("pynvml") def is_msamp_available(): return _is_package_available("msamp", "ms-amp") def is_transformer_engine_available(): return _is_package_available("transformer_engine") def is_fp8_available(): return is_msamp_available() or is_transformer_engine_available() def is_cuda_available(): """ Checks if `cuda` is available via an `nvml-based` check which won't trigger the drivers and leave cuda uninitialized. """ pytorch_nvml_based_cuda_check_previous_value = os.environ.get("PYTORCH_NVML_BASED_CUDA_CHECK") try: os.environ["PYTORCH_NVML_BASED_CUDA_CHECK"] = str(1) available = torch.cuda.is_available() finally: if pytorch_nvml_based_cuda_check_previous_value: os.environ["PYTORCH_NVML_BASED_CUDA_CHECK"] = pytorch_nvml_based_cuda_check_previous_value else: os.environ.pop("PYTORCH_NVML_BASED_CUDA_CHECK", None) return available @lru_cache def is_tpu_available(check_device=True): "Checks if `torch_xla` is installed and potentially if a TPU is in the environment" warnings.warn( "`is_tpu_available` is deprecated and will be removed in v0.27.0. " "Please use the `is_torch_xla_available` instead.", FutureWarning, ) # Due to bugs on the amp series GPUs, we disable torch-xla on them if is_cuda_available(): return False if check_device: if _tpu_available: try: # Will raise a RuntimeError if no XLA configuration is found _ = xm.xla_device() return True except RuntimeError: return False return _tpu_available @lru_cache def is_torch_xla_available(check_is_tpu=False, check_is_gpu=False): """ Check if `torch_xla` is available. To train a native pytorch job in an environment with torch xla installed, set the USE_TORCH_XLA to false. """ assert not (check_is_tpu and check_is_gpu), "The check_is_tpu and check_is_gpu cannot both be true." if not _torch_xla_available: return False elif check_is_gpu: return torch_xla.runtime.device_type() in ["GPU", "CUDA"] elif check_is_tpu: return torch_xla.runtime.device_type() == "TPU" return True def is_deepspeed_available(): if is_mlu_available(): return _is_package_available("deepspeed", metadata_name="deepspeed-mlu") return _is_package_available("deepspeed") def is_pippy_available(): package_exists = _is_package_available("pippy", "torchpippy") if package_exists: pippy_version = version.parse(importlib.metadata.version("torchpippy")) return compare_versions(pippy_version, ">", "0.1.1") return False def is_bf16_available(ignore_tpu=False): "Checks if bf16 is supported, optionally ignoring the TPU" if is_torch_xla_available(check_is_tpu=True): return not ignore_tpu if is_cuda_available(): return torch.cuda.is_bf16_supported() return True def is_4bit_bnb_available(): package_exists = _is_package_available("bitsandbytes") if package_exists: bnb_version = version.parse(importlib.metadata.version("bitsandbytes")) return compare_versions(bnb_version, ">=", "0.39.0") return False def is_8bit_bnb_available(): package_exists = _is_package_available("bitsandbytes") if package_exists: bnb_version = version.parse(importlib.metadata.version("bitsandbytes")) return compare_versions(bnb_version, ">=", "0.37.2") return False def is_bnb_available(): return _is_package_available("bitsandbytes") def is_megatron_lm_available(): if str_to_bool(os.environ.get("ACCELERATE_USE_MEGATRON_LM", "False")) == 1: package_exists = importlib.util.find_spec("megatron") is not None if package_exists: try: megatron_version = parse(importlib.metadata.version("megatron-lm")) return compare_versions(megatron_version, ">=", "2.2.0") except Exception as e: warnings.warn(f"Parse Megatron version failed. Exception:{e}") return False def is_transformers_available(): return _is_package_available("transformers") def is_datasets_available(): return _is_package_available("datasets") def is_peft_available(): return _is_package_available("peft") def is_timm_available(): return _is_package_available("timm") def is_aim_available(): package_exists = _is_package_available("aim") if package_exists: aim_version = version.parse(importlib.metadata.version("aim")) return compare_versions(aim_version, "<", "4.0.0") return False def is_tensorboard_available(): return _is_package_available("tensorboard") or _is_package_available("tensorboardX") def is_wandb_available(): return _is_package_available("wandb") def is_comet_ml_available(): return _is_package_available("comet_ml") def is_boto3_available(): return _is_package_available("boto3") def is_rich_available(): if _is_package_available("rich"): if "ACCELERATE_DISABLE_RICH" in os.environ: warnings.warn( "`ACCELERATE_DISABLE_RICH` is deprecated and will be removed in v0.22.0 and deactivated by default. Please use `ACCELERATE_ENABLE_RICH` if you wish to use `rich`." ) return not parse_flag_from_env("ACCELERATE_DISABLE_RICH", False) return parse_flag_from_env("ACCELERATE_ENABLE_RICH", False) return False def is_sagemaker_available(): return _is_package_available("sagemaker") def is_tqdm_available(): return _is_package_available("tqdm") def is_clearml_available(): return _is_package_available("clearml") def is_pandas_available(): return _is_package_available("pandas") def is_mlflow_available(): if _is_package_available("mlflow"): return True if importlib.util.find_spec("mlflow") is not None: try: _ = importlib.metadata.metadata("mlflow-skinny") return True except importlib.metadata.PackageNotFoundError: return False return False def is_mps_available(): return is_torch_version(">=", "1.12") and torch.backends.mps.is_available() and torch.backends.mps.is_built() def is_ipex_available(): def get_major_and_minor_from_version(full_version): return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor) _torch_version = importlib.metadata.version("torch") if importlib.util.find_spec("intel_extension_for_pytorch") is None: return False _ipex_version = "N/A" try: _ipex_version = importlib.metadata.version("intel_extension_for_pytorch") except importlib.metadata.PackageNotFoundError: return False torch_major_and_minor = get_major_and_minor_from_version(_torch_version) ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version) if torch_major_and_minor != ipex_major_and_minor: warnings.warn( f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*," f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again." ) return False return True @lru_cache def is_mlu_available(check_device=False): "Checks if `torch_mlu` is installed and potentially if a MLU is in the environment" if importlib.util.find_spec("torch_mlu") is None: return False import torch import torch_mlu # noqa: F401 if check_device: try: # Will raise a RuntimeError if no MLU is found _ = torch.mlu.device_count() return torch.mlu.is_available() except RuntimeError: return False return hasattr(torch, "mlu") and torch.mlu.is_available() @lru_cache def is_npu_available(check_device=False): "Checks if `torch_npu` is installed and potentially if a NPU is in the environment" if importlib.util.find_spec("torch") is None or importlib.util.find_spec("torch_npu") is None: return False import torch import torch_npu # noqa: F401 if check_device: try: # Will raise a RuntimeError if no NPU is found _ = torch.npu.device_count() return torch.npu.is_available() except RuntimeError: return False return hasattr(torch, "npu") and torch.npu.is_available() @lru_cache def is_xpu_available(check_device=False): "check if user disables it explicitly" if not parse_flag_from_env("ACCELERATE_USE_XPU", default=True): return False "Checks if `intel_extension_for_pytorch` is installed and potentially if a XPU is in the environment" if is_ipex_available(): import torch if is_torch_version("<=", "1.12"): return False else: return False import intel_extension_for_pytorch # noqa: F401 if check_device: try: # Will raise a RuntimeError if no XPU is found _ = torch.xpu.device_count() return torch.xpu.is_available() except RuntimeError: return False return hasattr(torch, "xpu") and torch.xpu.is_available() def is_dvclive_available(): return _is_package_available("dvclive")