# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class RegressionDataset: def __init__(self, a=2, b=3, length=64, seed=None): rng = np.random.default_rng(seed) self.length = length self.x = rng.normal(size=(length,)).astype(np.float32) self.y = a * self.x + b + rng.normal(scale=0.1, size=(length,)).astype(np.float32) def __len__(self): return self.length def __getitem__(self, i): return {"x": self.x[i], "y": self.y[i]} class RegressionModel4XPU(torch.nn.Module): def __init__(self, a=0, b=0, double_output=False): super().__init__() self.a = torch.nn.Parameter(torch.tensor([2, 3]).float()) self.b = torch.nn.Parameter(torch.tensor([2, 3]).float()) self.first_batch = True def forward(self, x=None): if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") self.first_batch = False return x * self.a[0] + self.b[0] class RegressionModel(torch.nn.Module): def __init__(self, a=0, b=0, double_output=False): super().__init__() self.a = torch.nn.Parameter(torch.tensor(a).float()) self.b = torch.nn.Parameter(torch.tensor(b).float()) self.first_batch = True def forward(self, x=None): if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") self.first_batch = False return x * self.a + self.b def mocked_dataloaders(accelerator, batch_size: int = 16): from datasets import load_dataset from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") data_files = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} datasets = load_dataset("csv", data_files=data_files) label_list = datasets["train"].unique("label") label_to_id = {v: i for i, v in enumerate(label_list)} def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer( examples["sentence1"], examples["sentence2"], truncation=True, max_length=None, padding="max_length" ) if "label" in examples: outputs["labels"] = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["sentence1", "sentence2", "label"], ) def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.XLA: return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt") return tokenizer.pad(examples, padding="longest", return_tensors="pt") # Instantiate dataloaders. train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=2) eval_dataloader = DataLoader(tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=1) return train_dataloader, eval_dataloader