Draken007's picture
Upload 7228 files
2a0bc63 verified
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import faiss
import time
import numpy as np
import logging
LOG = logging.getLogger(__name__)
def knn_ground_truth(xq, db_iterator, k, metric_type=faiss.METRIC_L2):
"""Computes the exact KNN search results for a dataset that possibly
does not fit in RAM but for which we have an iterator that
returns it block by block.
"""
LOG.info("knn_ground_truth queries size %s k=%d" % (xq.shape, k))
t0 = time.time()
nq, d = xq.shape
keep_max = faiss.is_similarity_metric(metric_type)
rh = faiss.ResultHeap(nq, k, keep_max=keep_max)
index = faiss.IndexFlat(d, metric_type)
if faiss.get_num_gpus():
LOG.info('running on %d GPUs' % faiss.get_num_gpus())
index = faiss.index_cpu_to_all_gpus(index)
# compute ground-truth by blocks, and add to heaps
i0 = 0
for xbi in db_iterator:
ni = xbi.shape[0]
index.add(xbi)
D, I = index.search(xq, k)
I += i0
rh.add_result(D, I)
index.reset()
i0 += ni
LOG.info("%d db elements, %.3f s" % (i0, time.time() - t0))
rh.finalize()
LOG.info("GT time: %.3f s (%d vectors)" % (time.time() - t0, i0))
return rh.D, rh.I
# knn function used to be here
knn = faiss.knn
def range_search_gpu(xq, r2, index_gpu, index_cpu, gpu_k=1024):
"""GPU does not support range search, so we emulate it with
knn search + fallback to CPU index.
The index_cpu can either be:
- a CPU index that supports range search
- a numpy table, that will be used to construct a Flat index if needed.
- None. In that case, at most gpu_k results will be returned
"""
nq, d = xq.shape
is_binary_index = isinstance(index_gpu, faiss.IndexBinary)
keep_max = faiss.is_similarity_metric(index_gpu.metric_type)
r2 = int(r2) if is_binary_index else float(r2)
k = min(index_gpu.ntotal, gpu_k)
LOG.debug(
f"GPU search {nq} queries with {k=:} {is_binary_index=:} {keep_max=:}")
t0 = time.time()
D, I = index_gpu.search(xq, k)
t1 = time.time() - t0
if is_binary_index:
assert d * 8 < 32768 # let's compact the distance matrix
D = D.astype('int16')
t2 = 0
lim_remain = None
if index_cpu is not None:
if not keep_max:
mask = D[:, k - 1] < r2
else:
mask = D[:, k - 1] > r2
if mask.sum() > 0:
LOG.debug("CPU search remain %d" % mask.sum())
t0 = time.time()
if isinstance(index_cpu, np.ndarray):
# then it in fact an array that we have to make flat
xb = index_cpu
if is_binary_index:
index_cpu = faiss.IndexBinaryFlat(d * 8)
else:
index_cpu = faiss.IndexFlat(d, index_gpu.metric_type)
index_cpu.add(xb)
lim_remain, D_remain, I_remain = index_cpu.range_search(xq[mask], r2)
if is_binary_index:
D_remain = D_remain.astype('int16')
t2 = time.time() - t0
LOG.debug("combine")
t0 = time.time()
CombinerRangeKNN = (
faiss.CombinerRangeKNNint16 if is_binary_index else
faiss.CombinerRangeKNNfloat
)
combiner = CombinerRangeKNN(nq, k, r2, keep_max)
if True:
sp = faiss.swig_ptr
combiner.I = sp(I)
combiner.D = sp(D)
# combiner.set_knn_result(sp(I), sp(D))
if lim_remain is not None:
combiner.mask = sp(mask)
combiner.D_remain = sp(D_remain)
combiner.lim_remain = sp(lim_remain.view("int64"))
combiner.I_remain = sp(I_remain)
# combiner.set_range_result(sp(mask), sp(lim_remain.view("int64")), sp(D_remain), sp(I_remain))
L_res = np.empty(nq + 1, dtype='int64')
combiner.compute_sizes(sp(L_res))
nres = L_res[-1]
D_res = np.empty(nres, dtype=D.dtype)
I_res = np.empty(nres, dtype='int64')
combiner.write_result(sp(D_res), sp(I_res))
else:
D_res, I_res = [], []
nr = 0
for i in range(nq):
if not mask[i]:
if index_gpu.metric_type == faiss.METRIC_L2:
nv = (D[i, :] < r2).sum()
else:
nv = (D[i, :] > r2).sum()
D_res.append(D[i, :nv])
I_res.append(I[i, :nv])
else:
l0, l1 = lim_remain[nr], lim_remain[nr + 1]
D_res.append(D_remain[l0:l1])
I_res.append(I_remain[l0:l1])
nr += 1
L_res = np.cumsum([0] + [len(di) for di in D_res])
D_res = np.hstack(D_res)
I_res = np.hstack(I_res)
t3 = time.time() - t0
LOG.debug(f"times {t1:.3f}s {t2:.3f}s {t3:.3f}s")
return L_res, D_res, I_res
def range_ground_truth(xq, db_iterator, threshold, metric_type=faiss.METRIC_L2,
shard=False, ngpu=-1):
"""Computes the range-search search results for a dataset that possibly
does not fit in RAM but for which we have an iterator that
returns it block by block.
"""
nq, d = xq.shape
t0 = time.time()
xq = np.ascontiguousarray(xq, dtype='float32')
index = faiss.IndexFlat(d, metric_type)
if ngpu == -1:
ngpu = faiss.get_num_gpus()
if ngpu:
LOG.info('running on %d GPUs' % ngpu)
co = faiss.GpuMultipleClonerOptions()
co.shard = shard
index_gpu = faiss.index_cpu_to_all_gpus(index, co=co, ngpu=ngpu)
# compute ground-truth by blocks
i0 = 0
D = [[] for _i in range(nq)]
I = [[] for _i in range(nq)]
for xbi in db_iterator:
ni = xbi.shape[0]
if ngpu > 0:
index_gpu.add(xbi)
lims_i, Di, Ii = range_search_gpu(xq, threshold, index_gpu, xbi)
index_gpu.reset()
else:
index.add(xbi)
lims_i, Di, Ii = index.range_search(xq, threshold)
index.reset()
Ii += i0
for j in range(nq):
l0, l1 = lims_i[j], lims_i[j + 1]
if l1 > l0:
D[j].append(Di[l0:l1])
I[j].append(Ii[l0:l1])
i0 += ni
LOG.info("%d db elements, %.3f s" % (i0, time.time() - t0))
empty_I = np.zeros(0, dtype='int64')
empty_D = np.zeros(0, dtype='float32')
# import pdb; pdb.set_trace()
D = [(np.hstack(i) if i != [] else empty_D) for i in D]
I = [(np.hstack(i) if i != [] else empty_I) for i in I]
sizes = [len(i) for i in I]
assert len(sizes) == nq
lims = np.zeros(nq + 1, dtype="uint64")
lims[1:] = np.cumsum(sizes)
return lims, np.hstack(D), np.hstack(I)
def threshold_radius_nres(nres, dis, ids, thresh, keep_max=False):
""" select a set of results """
if keep_max:
mask = dis > thresh
else:
mask = dis < thresh
new_nres = np.zeros_like(nres)
o = 0
for i, nr in enumerate(nres):
nr = int(nr) # avoid issues with int64 + uint64
new_nres[i] = mask[o:o + nr].sum()
o += nr
return new_nres, dis[mask], ids[mask]
def threshold_radius(lims, dis, ids, thresh, keep_max=False):
""" restrict range-search results to those below a given radius """
if keep_max:
mask = dis > thresh
else:
mask = dis < thresh
new_lims = np.zeros_like(lims)
n = len(lims) - 1
for i in range(n):
l0, l1 = lims[i], lims[i + 1]
new_lims[i + 1] = new_lims[i] + mask[l0:l1].sum()
return new_lims, dis[mask], ids[mask]
def apply_maxres(res_batches, target_nres, keep_max=False):
"""find radius that reduces number of results to target_nres, and
applies it in-place to the result batches used in
range_search_max_results"""
alldis = np.hstack([dis for _, dis, _ in res_batches])
assert len(alldis) > target_nres
if keep_max:
alldis.partition(len(alldis) - target_nres - 1)
radius = alldis[-1 - target_nres]
else:
alldis.partition(target_nres)
radius = alldis[target_nres]
if alldis.dtype == 'float32':
radius = float(radius)
else:
radius = int(radius)
LOG.debug(' setting radius to %s' % radius)
totres = 0
for i, (nres, dis, ids) in enumerate(res_batches):
nres, dis, ids = threshold_radius_nres(
nres, dis, ids, radius, keep_max=keep_max)
totres += len(dis)
res_batches[i] = nres, dis, ids
LOG.debug(' updated previous results, new nb results %d' % totres)
return radius, totres
def range_search_max_results(index, query_iterator, radius,
max_results=None, min_results=None,
shard=False, ngpu=0, clip_to_min=False):
"""Performs a range search with many queries (given by an iterator)
and adjusts the threshold on-the-fly so that the total results
table does not grow larger than max_results.
If ngpu != 0, the function moves the index to this many GPUs to
speed up search.
"""
# TODO: all result manipulations are in python, should move to C++ if perf
# critical
is_binary_index = isinstance(index, faiss.IndexBinary)
if min_results is None:
assert max_results is not None
min_results = int(0.8 * max_results)
if max_results is None:
assert min_results is not None
max_results = int(min_results * 1.5)
if ngpu == -1:
ngpu = faiss.get_num_gpus()
if ngpu:
LOG.info('running on %d GPUs' % ngpu)
co = faiss.GpuMultipleClonerOptions()
co.shard = shard
index_gpu = faiss.index_cpu_to_all_gpus(index, co=co, ngpu=ngpu)
else:
index_gpu = None
t_start = time.time()
t_search = t_post_process = 0
qtot = totres = raw_totres = 0
res_batches = []
for xqi in query_iterator:
t0 = time.time()
LOG.debug(f"searching {len(xqi)} vectors")
if index_gpu:
lims_i, Di, Ii = range_search_gpu(xqi, radius, index_gpu, index)
else:
lims_i, Di, Ii = index.range_search(xqi, radius)
nres_i = lims_i[1:] - lims_i[:-1]
raw_totres += len(Di)
qtot += len(xqi)
t1 = time.time()
if is_binary_index:
# weird Faiss quirk that returns floats for Hamming distances
Di = Di.astype('int16')
totres += len(Di)
res_batches.append((nres_i, Di, Ii))
if max_results is not None and totres > max_results:
LOG.info('too many results %d > %d, scaling back radius' %
(totres, max_results))
radius, totres = apply_maxres(
res_batches, min_results,
keep_max=index.metric_type == faiss.METRIC_INNER_PRODUCT
)
t2 = time.time()
t_search += t1 - t0
t_post_process += t2 - t1
LOG.debug(' [%.3f s] %d queries done, %d results' % (
time.time() - t_start, qtot, totres))
LOG.info(
'search done in %.3f s + %.3f s, total %d results, end threshold %g' % (
t_search, t_post_process, totres, radius)
)
if clip_to_min and totres > min_results:
radius, totres = apply_maxres(
res_batches, min_results,
keep_max=index.metric_type == faiss.METRIC_INNER_PRODUCT
)
nres = np.hstack([nres_i for nres_i, dis_i, ids_i in res_batches])
dis = np.hstack([dis_i for nres_i, dis_i, ids_i in res_batches])
ids = np.hstack([ids_i for nres_i, dis_i, ids_i in res_batches])
lims = np.zeros(len(nres) + 1, dtype='uint64')
lims[1:] = np.cumsum(nres)
return radius, lims, dis, ids
def exponential_query_iterator(xq, start_bs=32, max_bs=20000):
""" produces batches of progressively increasing sizes. This is useful to
adjust the search radius progressively without overflowing with
intermediate results """
nq = len(xq)
bs = start_bs
i = 0
while i < nq:
xqi = xq[i:i + bs]
yield xqi
if bs < max_bs:
bs *= 2
i += len(xqi)