Spaces:
Running
Running
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
from collections.abc import Mapping | |
from typing import Dict, List, Optional, Union | |
import numpy as np | |
import torch | |
from safetensors import safe_open | |
def offload_weight(weight, weight_name, offload_folder, index=None): | |
dtype = None | |
# Check the string instead of the dtype to be compatible with versions of PyTorch that don't have bfloat16. | |
if str(weight.dtype) == "torch.bfloat16": | |
# Need to reinterpret the underlined data as int16 since NumPy does not handle bfloat16s. | |
weight = weight.view(torch.int16) | |
dtype = "bfloat16" | |
array = weight.cpu().numpy() | |
tensor_file = os.path.join(offload_folder, f"{weight_name}.dat") | |
if index is not None: | |
if dtype is None: | |
dtype = str(array.dtype) | |
index[weight_name] = {"dtype": dtype, "shape": list(array.shape)} | |
if array.ndim == 0: | |
array = array[None] | |
file_array = np.memmap(tensor_file, dtype=array.dtype, mode="w+", shape=array.shape) | |
file_array[:] = array[:] | |
file_array.flush() | |
return index | |
def load_offloaded_weight(weight_file, weight_info): | |
shape = tuple(weight_info["shape"]) | |
if shape == (): | |
# NumPy memory-mapped arrays can't have 0 dims so it was saved as 1d tensor | |
shape = (1,) | |
dtype = weight_info["dtype"] | |
if dtype == "bfloat16": | |
# NumPy does not support bfloat16 so this was saved as a int16 | |
dtype = "int16" | |
weight = np.memmap(weight_file, dtype=dtype, shape=shape, mode="r") | |
if len(weight_info["shape"]) == 0: | |
weight = weight[0] | |
weight = torch.tensor(weight) | |
if weight_info["dtype"] == "bfloat16": | |
weight = weight.view(torch.bfloat16) | |
return weight | |
def save_offload_index(index, offload_folder): | |
if index is None or len(index) == 0: | |
# Nothing to save | |
return | |
offload_index_file = os.path.join(offload_folder, "index.json") | |
if os.path.isfile(offload_index_file): | |
with open(offload_index_file, encoding="utf-8") as f: | |
current_index = json.load(f) | |
else: | |
current_index = {} | |
current_index.update(index) | |
with open(offload_index_file, "w", encoding="utf-8") as f: | |
json.dump(current_index, f, indent=2) | |
def offload_state_dict(save_dir: Union[str, os.PathLike], state_dict: Dict[str, torch.Tensor]): | |
""" | |
Offload a state dict in a given folder. | |
Args: | |
save_dir (`str` or `os.PathLike`): | |
The directory in which to offload the state dict. | |
state_dict (`Dict[str, torch.Tensor]`): | |
The dictionary of tensors to offload. | |
""" | |
os.makedirs(save_dir, exist_ok=True) | |
index = {} | |
for name, parameter in state_dict.items(): | |
index = offload_weight(parameter, name, save_dir, index=index) | |
# Update index | |
save_offload_index(index, save_dir) | |
class PrefixedDataset(Mapping): | |
""" | |
Will access keys in a given dataset by adding a prefix. | |
Args: | |
dataset (`Mapping`): Any map with string keys. | |
prefix (`str`): A prefix to add when trying to access any element in the underlying dataset. | |
""" | |
def __init__(self, dataset: Mapping, prefix: str): | |
self.dataset = dataset | |
self.prefix = prefix | |
def __getitem__(self, key): | |
return self.dataset[f"{self.prefix}{key}"] | |
def __iter__(self): | |
return iter([key for key in self.dataset if key.startswith(self.prefix)]) | |
def __len__(self): | |
return len(self.dataset) | |
class OffloadedWeightsLoader(Mapping): | |
""" | |
A collection that loads weights stored in a given state dict or memory-mapped on disk. | |
Args: | |
state_dict (`Dict[str, torch.Tensor]`, *optional*): | |
A dictionary parameter name to tensor. | |
save_folder (`str` or `os.PathLike`, *optional*): | |
The directory in which the weights are stored (by `offload_state_dict` for instance). | |
index (`Dict`, *optional*): | |
A dictionary from weight name to their information (`dtype`/ `shape` or safetensors filename). Will default | |
to the index saved in `save_folder`. | |
""" | |
def __init__( | |
self, | |
state_dict: Dict[str, torch.Tensor] = None, | |
save_folder: Optional[Union[str, os.PathLike]] = None, | |
index: Mapping = None, | |
device=None, | |
): | |
if state_dict is None and save_folder is None and index is None: | |
raise ValueError("Need either a `state_dict`, a `save_folder` or an `index` containing offloaded weights.") | |
self.state_dict = {} if state_dict is None else state_dict | |
self.save_folder = save_folder | |
if index is None and save_folder is not None: | |
with open(os.path.join(save_folder, "index.json")) as f: | |
index = json.load(f) | |
self.index = {} if index is None else index | |
self.all_keys = list(self.state_dict.keys()) | |
self.all_keys.extend([key for key in self.index if key not in self.all_keys]) | |
self.device = device | |
def __getitem__(self, key: str): | |
# State dict gets priority | |
if key in self.state_dict: | |
return self.state_dict[key] | |
weight_info = self.index[key] | |
if weight_info.get("safetensors_file") is not None: | |
device = "cpu" if self.device is None else self.device | |
tensor = None | |
try: | |
with safe_open(weight_info["safetensors_file"], framework="pt", device=device) as f: | |
tensor = f.get_tensor(weight_info.get("weight_name", key)) | |
except TypeError: | |
# if failed to get_tensor on the device, such as bf16 on mps, try to load it on CPU first | |
with safe_open(weight_info["safetensors_file"], framework="pt", device="cpu") as f: | |
tensor = f.get_tensor(weight_info.get("weight_name", key)) | |
if "dtype" in weight_info: | |
tensor = tensor.to(getattr(torch, weight_info["dtype"])) | |
if tensor.device != torch.device(device): | |
tensor = tensor.to(device) | |
return tensor | |
weight_file = os.path.join(self.save_folder, f"{key}.dat") | |
return load_offloaded_weight(weight_file, weight_info) | |
def __iter__(self): | |
return iter(self.all_keys) | |
def __len__(self): | |
return len(self.all_keys) | |
def extract_submodules_state_dict(state_dict: Dict[str, torch.Tensor], submodule_names: List[str]): | |
""" | |
Extract the sub state-dict corresponding to a list of given submodules. | |
Args: | |
state_dict (`Dict[str, torch.Tensor]`): The state dict to extract from. | |
submodule_names (`List[str]`): The list of submodule names we want to extract. | |
""" | |
result = {} | |
for module_name in submodule_names: | |
# We want to catch module_name parameter (module_name.xxx) or potentially module_name, but not any of the | |
# submodules that could being like module_name (transformers.h.1 and transformers.h.10 for instance) | |
result.update( | |
{ | |
key: param | |
for key, param in state_dict.items() | |
if key == module_name or key.startswith(module_name + ".") | |
} | |
) | |
return result | |