Spaces:
Running
Running
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib | |
import importlib.metadata | |
import os | |
import warnings | |
from functools import lru_cache | |
import torch | |
from packaging import version | |
from packaging.version import parse | |
from .environment import parse_flag_from_env, str_to_bool | |
from .versions import compare_versions, is_torch_version | |
# Try to run Torch native job in an environment with TorchXLA installed by setting this value to 0. | |
USE_TORCH_XLA = parse_flag_from_env("USE_TORCH_XLA", default=True) | |
_torch_xla_available = False | |
if USE_TORCH_XLA: | |
try: | |
import torch_xla.core.xla_model as xm # noqa: F401 | |
import torch_xla.runtime | |
_torch_xla_available = True | |
except ImportError: | |
pass | |
# Keep it for is_tpu_available. It will be removed along with is_tpu_available. | |
_tpu_available = _torch_xla_available | |
# Cache this result has it's a C FFI call which can be pretty time-consuming | |
_torch_distributed_available = torch.distributed.is_available() | |
def _is_package_available(pkg_name, metadata_name=None): | |
# Check we're not importing a "pkg_name" directory somewhere but the actual library by trying to grab the version | |
package_exists = importlib.util.find_spec(pkg_name) is not None | |
if package_exists: | |
try: | |
# Some libraries have different names in the metadata | |
_ = importlib.metadata.metadata(pkg_name if metadata_name is None else metadata_name) | |
return True | |
except importlib.metadata.PackageNotFoundError: | |
return False | |
def is_torch_distributed_available() -> bool: | |
return _torch_distributed_available | |
def is_ccl_available(): | |
try: | |
pass | |
except ImportError: | |
print( | |
"Intel(R) oneCCL Bindings for PyTorch* is required to run DDP on Intel(R) GPUs, but it is not" | |
" detected. If you see \"ValueError: Invalid backend: 'ccl'\" error, please install Intel(R) oneCCL" | |
" Bindings for PyTorch*." | |
) | |
return ( | |
importlib.util.find_spec("torch_ccl") is not None | |
or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None | |
) | |
def get_ccl_version(): | |
return importlib.metadata.version("oneccl_bind_pt") | |
def is_pynvml_available(): | |
return _is_package_available("pynvml") | |
def is_msamp_available(): | |
return _is_package_available("msamp", "ms-amp") | |
def is_transformer_engine_available(): | |
return _is_package_available("transformer_engine") | |
def is_fp8_available(): | |
return is_msamp_available() or is_transformer_engine_available() | |
def is_cuda_available(): | |
""" | |
Checks if `cuda` is available via an `nvml-based` check which won't trigger the drivers and leave cuda | |
uninitialized. | |
""" | |
pytorch_nvml_based_cuda_check_previous_value = os.environ.get("PYTORCH_NVML_BASED_CUDA_CHECK") | |
try: | |
os.environ["PYTORCH_NVML_BASED_CUDA_CHECK"] = str(1) | |
available = torch.cuda.is_available() | |
finally: | |
if pytorch_nvml_based_cuda_check_previous_value: | |
os.environ["PYTORCH_NVML_BASED_CUDA_CHECK"] = pytorch_nvml_based_cuda_check_previous_value | |
else: | |
os.environ.pop("PYTORCH_NVML_BASED_CUDA_CHECK", None) | |
return available | |
def is_tpu_available(check_device=True): | |
"Checks if `torch_xla` is installed and potentially if a TPU is in the environment" | |
warnings.warn( | |
"`is_tpu_available` is deprecated and will be removed in v0.27.0. " | |
"Please use the `is_torch_xla_available` instead.", | |
FutureWarning, | |
) | |
# Due to bugs on the amp series GPUs, we disable torch-xla on them | |
if is_cuda_available(): | |
return False | |
if check_device: | |
if _tpu_available: | |
try: | |
# Will raise a RuntimeError if no XLA configuration is found | |
_ = xm.xla_device() | |
return True | |
except RuntimeError: | |
return False | |
return _tpu_available | |
def is_torch_xla_available(check_is_tpu=False, check_is_gpu=False): | |
""" | |
Check if `torch_xla` is available. To train a native pytorch job in an environment with torch xla installed, set | |
the USE_TORCH_XLA to false. | |
""" | |
assert not (check_is_tpu and check_is_gpu), "The check_is_tpu and check_is_gpu cannot both be true." | |
if not _torch_xla_available: | |
return False | |
elif check_is_gpu: | |
return torch_xla.runtime.device_type() in ["GPU", "CUDA"] | |
elif check_is_tpu: | |
return torch_xla.runtime.device_type() == "TPU" | |
return True | |
def is_deepspeed_available(): | |
if is_mlu_available(): | |
return _is_package_available("deepspeed", metadata_name="deepspeed-mlu") | |
return _is_package_available("deepspeed") | |
def is_pippy_available(): | |
package_exists = _is_package_available("pippy", "torchpippy") | |
if package_exists: | |
pippy_version = version.parse(importlib.metadata.version("torchpippy")) | |
return compare_versions(pippy_version, ">", "0.1.1") | |
return False | |
def is_bf16_available(ignore_tpu=False): | |
"Checks if bf16 is supported, optionally ignoring the TPU" | |
if is_torch_xla_available(check_is_tpu=True): | |
return not ignore_tpu | |
if is_cuda_available(): | |
return torch.cuda.is_bf16_supported() | |
return True | |
def is_4bit_bnb_available(): | |
package_exists = _is_package_available("bitsandbytes") | |
if package_exists: | |
bnb_version = version.parse(importlib.metadata.version("bitsandbytes")) | |
return compare_versions(bnb_version, ">=", "0.39.0") | |
return False | |
def is_8bit_bnb_available(): | |
package_exists = _is_package_available("bitsandbytes") | |
if package_exists: | |
bnb_version = version.parse(importlib.metadata.version("bitsandbytes")) | |
return compare_versions(bnb_version, ">=", "0.37.2") | |
return False | |
def is_bnb_available(): | |
return _is_package_available("bitsandbytes") | |
def is_megatron_lm_available(): | |
if str_to_bool(os.environ.get("ACCELERATE_USE_MEGATRON_LM", "False")) == 1: | |
package_exists = importlib.util.find_spec("megatron") is not None | |
if package_exists: | |
try: | |
megatron_version = parse(importlib.metadata.version("megatron-lm")) | |
return compare_versions(megatron_version, ">=", "2.2.0") | |
except Exception as e: | |
warnings.warn(f"Parse Megatron version failed. Exception:{e}") | |
return False | |
def is_transformers_available(): | |
return _is_package_available("transformers") | |
def is_datasets_available(): | |
return _is_package_available("datasets") | |
def is_peft_available(): | |
return _is_package_available("peft") | |
def is_timm_available(): | |
return _is_package_available("timm") | |
def is_aim_available(): | |
package_exists = _is_package_available("aim") | |
if package_exists: | |
aim_version = version.parse(importlib.metadata.version("aim")) | |
return compare_versions(aim_version, "<", "4.0.0") | |
return False | |
def is_tensorboard_available(): | |
return _is_package_available("tensorboard") or _is_package_available("tensorboardX") | |
def is_wandb_available(): | |
return _is_package_available("wandb") | |
def is_comet_ml_available(): | |
return _is_package_available("comet_ml") | |
def is_boto3_available(): | |
return _is_package_available("boto3") | |
def is_rich_available(): | |
if _is_package_available("rich"): | |
if "ACCELERATE_DISABLE_RICH" in os.environ: | |
warnings.warn( | |
"`ACCELERATE_DISABLE_RICH` is deprecated and will be removed in v0.22.0 and deactivated by default. Please use `ACCELERATE_ENABLE_RICH` if you wish to use `rich`." | |
) | |
return not parse_flag_from_env("ACCELERATE_DISABLE_RICH", False) | |
return parse_flag_from_env("ACCELERATE_ENABLE_RICH", False) | |
return False | |
def is_sagemaker_available(): | |
return _is_package_available("sagemaker") | |
def is_tqdm_available(): | |
return _is_package_available("tqdm") | |
def is_clearml_available(): | |
return _is_package_available("clearml") | |
def is_pandas_available(): | |
return _is_package_available("pandas") | |
def is_mlflow_available(): | |
if _is_package_available("mlflow"): | |
return True | |
if importlib.util.find_spec("mlflow") is not None: | |
try: | |
_ = importlib.metadata.metadata("mlflow-skinny") | |
return True | |
except importlib.metadata.PackageNotFoundError: | |
return False | |
return False | |
def is_mps_available(): | |
return is_torch_version(">=", "1.12") and torch.backends.mps.is_available() and torch.backends.mps.is_built() | |
def is_ipex_available(): | |
def get_major_and_minor_from_version(full_version): | |
return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor) | |
_torch_version = importlib.metadata.version("torch") | |
if importlib.util.find_spec("intel_extension_for_pytorch") is None: | |
return False | |
_ipex_version = "N/A" | |
try: | |
_ipex_version = importlib.metadata.version("intel_extension_for_pytorch") | |
except importlib.metadata.PackageNotFoundError: | |
return False | |
torch_major_and_minor = get_major_and_minor_from_version(_torch_version) | |
ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version) | |
if torch_major_and_minor != ipex_major_and_minor: | |
warnings.warn( | |
f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*," | |
f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again." | |
) | |
return False | |
return True | |
def is_mlu_available(check_device=False): | |
"Checks if `torch_mlu` is installed and potentially if a MLU is in the environment" | |
if importlib.util.find_spec("torch_mlu") is None: | |
return False | |
import torch | |
import torch_mlu # noqa: F401 | |
if check_device: | |
try: | |
# Will raise a RuntimeError if no MLU is found | |
_ = torch.mlu.device_count() | |
return torch.mlu.is_available() | |
except RuntimeError: | |
return False | |
return hasattr(torch, "mlu") and torch.mlu.is_available() | |
def is_npu_available(check_device=False): | |
"Checks if `torch_npu` is installed and potentially if a NPU is in the environment" | |
if importlib.util.find_spec("torch") is None or importlib.util.find_spec("torch_npu") is None: | |
return False | |
import torch | |
import torch_npu # noqa: F401 | |
if check_device: | |
try: | |
# Will raise a RuntimeError if no NPU is found | |
_ = torch.npu.device_count() | |
return torch.npu.is_available() | |
except RuntimeError: | |
return False | |
return hasattr(torch, "npu") and torch.npu.is_available() | |
def is_xpu_available(check_device=False): | |
"check if user disables it explicitly" | |
if not parse_flag_from_env("ACCELERATE_USE_XPU", default=True): | |
return False | |
"Checks if `intel_extension_for_pytorch` is installed and potentially if a XPU is in the environment" | |
if is_ipex_available(): | |
import torch | |
if is_torch_version("<=", "1.12"): | |
return False | |
else: | |
return False | |
import intel_extension_for_pytorch # noqa: F401 | |
if check_device: | |
try: | |
# Will raise a RuntimeError if no XPU is found | |
_ = torch.xpu.device_count() | |
return torch.xpu.is_available() | |
except RuntimeError: | |
return False | |
return hasattr(torch, "xpu") and torch.xpu.is_available() | |
def is_dvclive_available(): | |
return _is_package_available("dvclive") | |