Draken007's picture
Upload 7228 files
2a0bc63 verified
raw
history blame
15.3 kB
import json
import anywidget
import traitlets
import pathlib
from typing import Any, Set, Optional
import altair as alt
from altair.utils._vegafusion_data import (
using_vegafusion,
compile_to_vegafusion_chart_state,
)
from altair import TopLevelSpec
from altair.utils.selection import IndexSelection, PointSelection, IntervalSelection
_here = pathlib.Path(__file__).parent
class Params(traitlets.HasTraits):
"""
Traitlet class storing a JupyterChart's params
"""
def __init__(self, trait_values):
super().__init__()
for key, value in trait_values.items():
if isinstance(value, (int, float)):
traitlet_type = traitlets.Float()
elif isinstance(value, str):
traitlet_type = traitlets.Unicode()
elif isinstance(value, list):
traitlet_type = traitlets.List()
elif isinstance(value, dict):
traitlet_type = traitlets.Dict()
else:
traitlet_type = traitlets.Any()
# Add the new trait.
self.add_traits(**{key: traitlet_type})
# Set the trait's value.
setattr(self, key, value)
def __repr__(self):
return f"Params({self.trait_values()})"
class Selections(traitlets.HasTraits):
"""
Traitlet class storing a JupyterChart's selections
"""
def __init__(self, trait_values):
super().__init__()
for key, value in trait_values.items():
if isinstance(value, IndexSelection):
traitlet_type = traitlets.Instance(IndexSelection)
elif isinstance(value, PointSelection):
traitlet_type = traitlets.Instance(PointSelection)
elif isinstance(value, IntervalSelection):
traitlet_type = traitlets.Instance(IntervalSelection)
else:
raise ValueError(f"Unexpected selection type: {type(value)}")
# Add the new trait.
self.add_traits(**{key: traitlet_type})
# Set the trait's value.
setattr(self, key, value)
# Make read-only
self.observe(self._make_read_only, names=key)
def __repr__(self):
return f"Selections({self.trait_values()})"
def _make_read_only(self, change):
"""
Work around to make traits read-only, but still allow us to change
them internally
"""
if change["name"] in self.traits() and change["old"] != change["new"]:
self._set_value(change["name"], change["old"])
raise ValueError(
"Selections may not be set from Python.\n"
f"Attempted to set select: {change['name']}"
)
def _set_value(self, key, value):
self.unobserve(self._make_read_only, names=key)
setattr(self, key, value)
self.observe(self._make_read_only, names=key)
def load_js_src() -> str:
return (_here / "js" / "index.js").read_text()
class JupyterChart(anywidget.AnyWidget):
_esm = load_js_src()
_css = r"""
.vega-embed {
/* Make sure action menu isn't cut off */
overflow: visible;
}
"""
# Public traitlets
chart = traitlets.Instance(TopLevelSpec, allow_none=True)
spec = traitlets.Dict(allow_none=True).tag(sync=True)
debounce_wait = traitlets.Float(default_value=10).tag(sync=True)
max_wait = traitlets.Bool(default_value=True).tag(sync=True)
local_tz = traitlets.Unicode(default_value=None, allow_none=True).tag(sync=True)
debug = traitlets.Bool(default_value=False)
embed_options = traitlets.Dict(default_value=None, allow_none=True).tag(sync=True)
# Internal selection traitlets
_selection_types = traitlets.Dict()
_vl_selections = traitlets.Dict().tag(sync=True)
# Internal param traitlets
_params = traitlets.Dict().tag(sync=True)
# Internal comm traitlets for VegaFusion support
_chart_state = traitlets.Any(allow_none=True)
_js_watch_plan = traitlets.Any(allow_none=True).tag(sync=True)
_js_to_py_updates = traitlets.Any(allow_none=True).tag(sync=True)
_py_to_js_updates = traitlets.Any(allow_none=True).tag(sync=True)
# Track whether charts are configured for offline use
_is_offline = False
@classmethod
def enable_offline(cls, offline: bool = True):
"""
Configure JupyterChart's offline behavior
Parameters
----------
offline: bool
If True, configure JupyterChart to operate in offline mode where JavaScript
dependencies are loaded from vl-convert.
If False, configure it to operate in online mode where JavaScript dependencies
are loaded from CDN dynamically. This is the default behavior.
"""
from altair.utils._importers import import_vl_convert, vl_version_for_vl_convert
if offline:
if cls._is_offline:
# Already offline
return
vlc = import_vl_convert()
src_lines = load_js_src().split("\n")
# Remove leading lines with only whitespace, comments, or imports
while src_lines and (
len(src_lines[0].strip()) == 0
or src_lines[0].startswith("import")
or src_lines[0].startswith("//")
):
src_lines.pop(0)
src = "\n".join(src_lines)
# vl-convert's javascript_bundle function creates a self-contained JavaScript bundle
# for JavaScript snippets that import from a small set of dependencies that
# vl-convert includes. To see the available imports and their imported names, run
# import vl_convert as vlc
# help(vlc.javascript_bundle)
bundled_src = vlc.javascript_bundle(
src, vl_version=vl_version_for_vl_convert()
)
cls._esm = bundled_src
cls._is_offline = True
else:
cls._esm = load_js_src()
cls._is_offline = False
def __init__(
self,
chart: TopLevelSpec,
debounce_wait: int = 10,
max_wait: bool = True,
debug: bool = False,
embed_options: Optional[dict] = None,
**kwargs: Any,
):
"""
Jupyter Widget for displaying and updating Altair Charts, and
retrieving selection and parameter values
Parameters
----------
chart: Chart
Altair Chart instance
debounce_wait: int
Debouncing wait time in milliseconds. Updates will be sent from the client to the kernel
after debounce_wait milliseconds of no chart interactions.
max_wait: bool
If True (default), updates will be sent from the client to the kernel every debounce_wait
milliseconds even if there are ongoing chart interactions. If False, updates will not be
sent until chart interactions have completed.
debug: bool
If True, debug messages will be printed
embed_options: dict
Options to pass to vega-embed.
See https://github.com/vega/vega-embed?tab=readme-ov-file#options
"""
self.params = Params({})
self.selections = Selections({})
super().__init__(
chart=chart,
debounce_wait=debounce_wait,
max_wait=max_wait,
debug=debug,
embed_options=embed_options,
**kwargs,
)
@traitlets.observe("chart")
def _on_change_chart(self, change):
"""
Internal callback function that updates the JupyterChart's internal
state when the wrapped Chart instance changes
"""
new_chart = change.new
selection_watches = []
selection_types = {}
initial_params = {}
initial_vl_selections = {}
empty_selections = {}
if new_chart is None:
with self.hold_sync():
self.spec = None
self._selection_types = selection_types
self._vl_selections = initial_vl_selections
self._params = initial_params
return
params = getattr(new_chart, "params", [])
if params is not alt.Undefined:
for param in new_chart.params:
if isinstance(param.name, alt.ParameterName):
clean_name = param.name.to_json().strip('"')
else:
clean_name = param.name
select = getattr(param, "select", alt.Undefined)
if select != alt.Undefined:
if not isinstance(select, dict):
select = select.to_dict()
select_type = select["type"]
if select_type == "point":
if not (
select.get("fields", None) or select.get("encodings", None)
):
# Point selection with no associated fields or encodings specified.
# This is an index-based selection
selection_types[clean_name] = "index"
empty_selections[clean_name] = IndexSelection(
name=clean_name, value=[], store=[]
)
else:
selection_types[clean_name] = "point"
empty_selections[clean_name] = PointSelection(
name=clean_name, value=[], store=[]
)
elif select_type == "interval":
selection_types[clean_name] = "interval"
empty_selections[clean_name] = IntervalSelection(
name=clean_name, value={}, store=[]
)
else:
raise ValueError(f"Unexpected selection type {select.type}")
selection_watches.append(clean_name)
initial_vl_selections[clean_name] = {"value": None, "store": []}
else:
clean_value = param.value if param.value != alt.Undefined else None
initial_params[clean_name] = clean_value
# Handle the params generated by transforms
for param_name in collect_transform_params(new_chart):
initial_params[param_name] = None
# Setup params
self.params = Params(initial_params)
def on_param_traitlet_changed(param_change):
new_params = dict(self._params)
new_params[param_change["name"]] = param_change["new"]
self._params = new_params
self.params.observe(on_param_traitlet_changed)
# Setup selections
self.selections = Selections(empty_selections)
# Update properties all together
with self.hold_sync():
if using_vegafusion():
if self.local_tz is None:
self.spec = None
def on_local_tz_change(change):
self._init_with_vegafusion(change["new"])
self.observe(on_local_tz_change, ["local_tz"])
else:
self._init_with_vegafusion(self.local_tz)
else:
self.spec = new_chart.to_dict()
self._selection_types = selection_types
self._vl_selections = initial_vl_selections
self._params = initial_params
def _init_with_vegafusion(self, local_tz: str):
if self.chart is not None:
vegalite_spec = self.chart.to_dict(context={"pre_transform": False})
with self.hold_sync():
self._chart_state = compile_to_vegafusion_chart_state(
vegalite_spec, local_tz
)
self._js_watch_plan = self._chart_state.get_watch_plan()[
"client_to_server"
]
self.spec = self._chart_state.get_transformed_spec()
# Callback to update chart state and send updates back to client
def on_js_to_py_updates(change):
if self.debug:
updates_str = json.dumps(change["new"], indent=2)
print(
f"JavaScript to Python VegaFusion updates:\n {updates_str}"
)
updates = self._chart_state.update(change["new"])
if self.debug:
updates_str = json.dumps(updates, indent=2)
print(
f"Python to JavaScript VegaFusion updates:\n {updates_str}"
)
self._py_to_js_updates = updates
self.observe(on_js_to_py_updates, ["_js_to_py_updates"])
@traitlets.observe("_params")
def _on_change_params(self, change):
for param_name, value in change.new.items():
setattr(self.params, param_name, value)
@traitlets.observe("_vl_selections")
def _on_change_selections(self, change):
"""
Internal callback function that updates the JupyterChart's public
selections traitlet in response to changes that the JavaScript logic
makes to the internal _selections traitlet.
"""
for selection_name, selection_dict in change.new.items():
value = selection_dict["value"]
store = selection_dict["store"]
selection_type = self._selection_types[selection_name]
if selection_type == "index":
self.selections._set_value(
selection_name,
IndexSelection.from_vega(selection_name, signal=value, store=store),
)
elif selection_type == "point":
self.selections._set_value(
selection_name,
PointSelection.from_vega(selection_name, signal=value, store=store),
)
elif selection_type == "interval":
self.selections._set_value(
selection_name,
IntervalSelection.from_vega(
selection_name, signal=value, store=store
),
)
def collect_transform_params(chart: TopLevelSpec) -> Set[str]:
"""
Collect the names of params that are defined by transforms
Parameters
----------
chart: Chart from which to extract transform params
Returns
-------
set of param names
"""
transform_params = set()
# Handle recursive case
for prop in ("layer", "concat", "hconcat", "vconcat"):
for child in getattr(chart, prop, []):
transform_params.update(collect_transform_params(child))
# Handle chart's own transforms
transforms = getattr(chart, "transform", [])
transforms = transforms if transforms != alt.Undefined else []
for tx in transforms:
if hasattr(tx, "param"):
transform_params.add(tx.param)
return transform_params