Spaces:
Running
Running
File size: 9,489 Bytes
2a0bc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# @nolint
# not linting this file because it imports * from swigfaiss, which
# causes a ton of useless warnings.
import numpy as np
from faiss.loader import *
###########################################
# GPU functions
###########################################
def index_cpu_to_gpu_multiple_py(resources, index, co=None, gpus=None):
""" builds the C++ vectors for the GPU indices and the
resources. Handles the case where the resources are assigned to
the list of GPUs """
if gpus is None:
gpus = range(len(resources))
vres = GpuResourcesVector()
vdev = Int32Vector()
for i, res in zip(gpus, resources):
vdev.push_back(i)
vres.push_back(res)
if isinstance(index, IndexBinary):
return index_binary_cpu_to_gpu_multiple(vres, vdev, index, co)
else:
return index_cpu_to_gpu_multiple(vres, vdev, index, co)
def index_cpu_to_all_gpus(index, co=None, ngpu=-1):
index_gpu = index_cpu_to_gpus_list(index, co=co, gpus=None, ngpu=ngpu)
return index_gpu
def index_cpu_to_gpus_list(index, co=None, gpus=None, ngpu=-1):
""" Here we can pass list of GPU ids as a parameter or ngpu to
use first n GPU's. gpus mut be a list or None.
co is a GpuMultipleClonerOptions
"""
if (gpus is None) and (ngpu == -1): # All blank
gpus = range(get_num_gpus())
elif (gpus is None) and (ngpu != -1): # Get number of GPU's only
gpus = range(ngpu)
res = [StandardGpuResources() for _ in gpus]
index_gpu = index_cpu_to_gpu_multiple_py(res, index, co, gpus)
return index_gpu
# allows numpy ndarray usage with bfKnn
def knn_gpu(res, xq, xb, k, D=None, I=None, metric=METRIC_L2, device=-1, use_raft=False, vectorsMemoryLimit=0, queriesMemoryLimit=0):
"""
Compute the k nearest neighbors of a vector on one GPU without constructing an index
Parameters
----------
res : StandardGpuResources
GPU resources to use during computation
xq : array_like
Query vectors, shape (nq, d) where d is appropriate for the index.
`dtype` must be float32.
xb : array_like
Database vectors, shape (nb, d) where d is appropriate for the index.
`dtype` must be float32.
k : int
Number of nearest neighbors.
D : array_like, optional
Output array for distances of the nearest neighbors, shape (nq, k)
I : array_like, optional
Output array for the nearest neighbors, shape (nq, k)
metric : MetricType, optional
Distance measure to use (either METRIC_L2 or METRIC_INNER_PRODUCT)
device: int, optional
Which CUDA device in the system to run the search on. -1 indicates that
the current thread-local device state (via cudaGetDevice) should be used
(can also be set via torch.cuda.set_device in PyTorch)
Otherwise, an integer 0 <= device < numDevices indicates the GPU on which
the computation should be run
vectorsMemoryLimit: int, optional
queriesMemoryLimit: int, optional
Memory limits for vectors and queries.
If not 0, the GPU will use at most this amount of memory
for vectors and queries respectively.
Vectors are broken up into chunks of size vectorsMemoryLimit,
and queries are broken up into chunks of size queriesMemoryLimit,
including the memory required for the results.
Returns
-------
D : array_like
Distances of the nearest neighbors, shape (nq, k)
I : array_like
Labels of the nearest neighbors, shape (nq, k)
"""
nq, d = xq.shape
if xq.flags.c_contiguous:
xq_row_major = True
elif xq.flags.f_contiguous:
xq = xq.T
xq_row_major = False
else:
xq = np.ascontiguousarray(xq, dtype='float32')
xq_row_major = True
xq_ptr = swig_ptr(xq)
if xq.dtype == np.float32:
xq_type = DistanceDataType_F32
elif xq.dtype == np.float16:
xq_type = DistanceDataType_F16
else:
raise TypeError('xq must be f32 or f16')
nb, d2 = xb.shape
assert d2 == d
if xb.flags.c_contiguous:
xb_row_major = True
elif xb.flags.f_contiguous:
xb = xb.T
xb_row_major = False
else:
xb = np.ascontiguousarray(xb, dtype='float32')
xb_row_major = True
xb_ptr = swig_ptr(xb)
if xb.dtype == np.float32:
xb_type = DistanceDataType_F32
elif xb.dtype == np.float16:
xb_type = DistanceDataType_F16
else:
raise TypeError('xb must be float32 or float16')
if D is None:
D = np.empty((nq, k), dtype=np.float32)
else:
assert D.shape == (nq, k)
# interface takes void*, we need to check this
assert D.dtype == np.float32
D_ptr = swig_ptr(D)
if I is None:
I = np.empty((nq, k), dtype=np.int64)
else:
assert I.shape == (nq, k)
I_ptr = swig_ptr(I)
if I.dtype == np.int64:
I_type = IndicesDataType_I64
elif I.dtype == I.dtype == np.int32:
I_type = IndicesDataType_I32
else:
raise TypeError('I must be i64 or i32')
args = GpuDistanceParams()
args.metric = metric
args.k = k
args.dims = d
args.vectors = xb_ptr
args.vectorsRowMajor = xb_row_major
args.vectorType = xb_type
args.numVectors = nb
args.queries = xq_ptr
args.queriesRowMajor = xq_row_major
args.queryType = xq_type
args.numQueries = nq
args.outDistances = D_ptr
args.outIndices = I_ptr
args.outIndicesType = I_type
args.device = device
args.use_raft = use_raft
# no stream synchronization needed, inputs and outputs are guaranteed to
# be on the CPU (numpy arrays)
if vectorsMemoryLimit > 0 or queriesMemoryLimit > 0:
bfKnn_tiling(res, args, vectorsMemoryLimit, queriesMemoryLimit)
else:
bfKnn(res, args)
return D, I
# allows numpy ndarray usage with bfKnn for all pairwise distances
def pairwise_distance_gpu(res, xq, xb, D=None, metric=METRIC_L2, device=-1):
"""
Compute all pairwise distances between xq and xb on one GPU without constructing an index
Parameters
----------
res : StandardGpuResources
GPU resources to use during computation
xq : array_like
Query vectors, shape (nq, d) where d is appropriate for the index.
`dtype` must be float32.
xb : array_like
Database vectors, shape (nb, d) where d is appropriate for the index.
`dtype` must be float32.
D : array_like, optional
Output array for all pairwise distances, shape (nq, nb)
metric : MetricType, optional
Distance measure to use (either METRIC_L2 or METRIC_INNER_PRODUCT)
device: int, optional
Which CUDA device in the system to run the search on. -1 indicates that
the current thread-local device state (via cudaGetDevice) should be used
(can also be set via torch.cuda.set_device in PyTorch)
Otherwise, an integer 0 <= device < numDevices indicates the GPU on which
the computation should be run
Returns
-------
D : array_like
All pairwise distances, shape (nq, nb)
"""
nq, d = xq.shape
if xq.flags.c_contiguous:
xq_row_major = True
elif xq.flags.f_contiguous:
xq = xq.T
xq_row_major = False
else:
raise TypeError(
'xq matrix should be row (C) or column-major (Fortran)')
xq_ptr = swig_ptr(xq)
if xq.dtype == np.float32:
xq_type = DistanceDataType_F32
elif xq.dtype == np.float16:
xq_type = DistanceDataType_F16
else:
xq = np.ascontiguousarray(xb, dtype='float32')
xq_row_major = True
nb, d2 = xb.shape
assert d2 == d
if xb.flags.c_contiguous:
xb_row_major = True
elif xb.flags.f_contiguous:
xb = xb.T
xb_row_major = False
else:
xb = np.ascontiguousarray(xb, dtype='float32')
xb_row_major = True
xb_ptr = swig_ptr(xb)
if xb.dtype == np.float32:
xb_type = DistanceDataType_F32
elif xb.dtype == np.float16:
xb_type = DistanceDataType_F16
else:
raise TypeError('xb must be float32 or float16')
if D is None:
D = np.empty((nq, nb), dtype=np.float32)
else:
assert D.shape == (nq, nb)
# interface takes void*, we need to check this
assert D.dtype == np.float32
D_ptr = swig_ptr(D)
args = GpuDistanceParams()
args.metric = metric
args.k = -1 # selects all pairwise distances
args.dims = d
args.vectors = xb_ptr
args.vectorsRowMajor = xb_row_major
args.vectorType = xb_type
args.numVectors = nb
args.queries = xq_ptr
args.queriesRowMajor = xq_row_major
args.queryType = xq_type
args.numQueries = nq
args.outDistances = D_ptr
args.device = device
# no stream synchronization needed, inputs and outputs are guaranteed to
# be on the CPU (numpy arrays)
bfKnn(res, args)
return D
|