Spaces:
Running
Running
File size: 18,153 Bytes
2a0bc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import time
import pickle
import os
import logging
from multiprocessing.pool import ThreadPool
import threading
import _thread
from queue import Queue
import traceback
import datetime
import numpy as np
import faiss
from faiss.contrib.inspect_tools import get_invlist
class BigBatchSearcher:
"""
Object that manages all the data related to the computation
except the actual within-bucket matching and the organization of the
computation (parallel or not)
"""
def __init__(
self,
index, xq, k,
verbose=0,
use_float16=False):
# verbosity
self.verbose = verbose
self.tictoc = []
self.xq = xq
self.index = index
self.use_float16 = use_float16
keep_max = faiss.is_similarity_metric(index.metric_type)
self.rh = faiss.ResultHeap(len(xq), k, keep_max=keep_max)
self.t_accu = [0] * 6
self.t_display = self.t0 = time.time()
def start_t_accu(self):
self.t_accu_t0 = time.time()
def stop_t_accu(self, n):
self.t_accu[n] += time.time() - self.t_accu_t0
def tic(self, name):
self.tictoc = (name, time.time())
if self.verbose > 0:
print(name, end="\r", flush=True)
def toc(self):
name, t0 = self.tictoc
dt = time.time() - t0
if self.verbose > 0:
print(f"{name}: {dt:.3f} s")
return dt
def report(self, l):
if self.verbose == 1 or (
self.verbose == 2 and (
l > 1000 and time.time() < self.t_display + 1.0
)
):
return
t = time.time() - self.t0
print(
f"[{t:.1f} s] list {l}/{self.index.nlist} "
f"times prep q {self.t_accu[0]:.3f} prep b {self.t_accu[1]:.3f} "
f"comp {self.t_accu[2]:.3f} res {self.t_accu[3]:.3f} "
f"wait in {self.t_accu[4]:.3f} "
f"wait out {self.t_accu[5]:.3f} "
f"eta {datetime.timedelta(seconds=t*self.index.nlist/(l+1)-t)} "
f"mem {faiss.get_mem_usage_kb()}",
end="\r" if self.verbose <= 2 else "\n",
flush=True,
)
self.t_display = time.time()
def coarse_quantization(self):
self.tic("coarse quantization")
bs = 65536
nq = len(self.xq)
q_assign = np.empty((nq, self.index.nprobe), dtype='int32')
for i0 in range(0, nq, bs):
i1 = min(nq, i0 + bs)
q_dis_i, q_assign_i = self.index.quantizer.search(
self.xq[i0:i1], self.index.nprobe)
# q_dis[i0:i1] = q_dis_i
q_assign[i0:i1] = q_assign_i
self.toc()
self.q_assign = q_assign
def reorder_assign(self):
self.tic("bucket sort")
q_assign = self.q_assign
q_assign += 1 # move -1 -> 0
self.bucket_lims = faiss.matrix_bucket_sort_inplace(
self.q_assign, nbucket=self.index.nlist + 1, nt=16)
self.query_ids = self.q_assign.ravel()
if self.verbose > 0:
print(' number of -1s:', self.bucket_lims[1])
self.bucket_lims = self.bucket_lims[1:] # shift back to ignore -1s
del self.q_assign # inplace so let's forget about the old version...
self.toc()
def prepare_bucket(self, l):
""" prepare the queries and database items for bucket l"""
t0 = time.time()
index = self.index
# prepare queries
i0, i1 = self.bucket_lims[l], self.bucket_lims[l + 1]
q_subset = self.query_ids[i0:i1]
xq_l = self.xq[q_subset]
if self.by_residual:
xq_l = xq_l - index.quantizer.reconstruct(l)
t1 = time.time()
# prepare database side
list_ids, xb_l = get_invlist(index.invlists, l)
if self.decode_func is None:
xb_l = xb_l.ravel()
else:
xb_l = self.decode_func(xb_l)
if self.use_float16:
xb_l = xb_l.astype('float16')
xq_l = xq_l.astype('float16')
t2 = time.time()
self.t_accu[0] += t1 - t0
self.t_accu[1] += t2 - t1
return q_subset, xq_l, list_ids, xb_l
def add_results_to_heap(self, q_subset, D, list_ids, I):
"""add the bucket results to the heap structure"""
if D is None:
return
t0 = time.time()
if I is None:
I = list_ids
else:
I = list_ids[I]
self.rh.add_result_subset(q_subset, D, I)
self.t_accu[3] += time.time() - t0
def sizes_in_checkpoint(self):
return (self.xq.shape, self.index.nprobe, self.index.nlist)
def write_checkpoint(self, fname, completed):
# write to temp file then move to final file
tmpname = fname + ".tmp"
with open(tmpname, "wb") as f:
pickle.dump(
{
"sizes": self.sizes_in_checkpoint(),
"completed": completed,
"rh": (self.rh.D, self.rh.I),
}, f, -1)
os.replace(tmpname, fname)
def read_checkpoint(self, fname):
with open(fname, "rb") as f:
ckp = pickle.load(f)
assert ckp["sizes"] == self.sizes_in_checkpoint()
self.rh.D[:] = ckp["rh"][0]
self.rh.I[:] = ckp["rh"][1]
return ckp["completed"]
class BlockComputer:
""" computation within one bucket """
def __init__(
self,
index,
method="knn_function",
pairwise_distances=faiss.pairwise_distances,
knn=faiss.knn):
self.index = index
if index.__class__ == faiss.IndexIVFFlat:
index_help = faiss.IndexFlat(index.d, index.metric_type)
decode_func = lambda x: x.view("float32")
by_residual = False
elif index.__class__ == faiss.IndexIVFPQ:
index_help = faiss.IndexPQ(
index.d, index.pq.M, index.pq.nbits, index.metric_type)
index_help.pq = index.pq
decode_func = index_help.pq.decode
index_help.is_trained = True
by_residual = index.by_residual
elif index.__class__ == faiss.IndexIVFScalarQuantizer:
index_help = faiss.IndexScalarQuantizer(
index.d, index.sq.qtype, index.metric_type)
index_help.sq = index.sq
decode_func = index_help.sq.decode
index_help.is_trained = True
by_residual = index.by_residual
else:
raise RuntimeError(f"index type {index.__class__} not supported")
self.index_help = index_help
self.decode_func = None if method == "index" else decode_func
self.by_residual = by_residual
self.method = method
self.pairwise_distances = pairwise_distances
self.knn = knn
def block_search(self, xq_l, xb_l, list_ids, k, **extra_args):
metric_type = self.index.metric_type
if xq_l.size == 0 or xb_l.size == 0:
D = I = None
elif self.method == "index":
faiss.copy_array_to_vector(xb_l, self.index_help.codes)
self.index_help.ntotal = len(list_ids)
D, I = self.index_help.search(xq_l, k)
elif self.method == "pairwise_distances":
# TODO implement blockwise to avoid mem blowup
D = self.pairwise_distances(xq_l, xb_l, metric=metric_type)
I = None
elif self.method == "knn_function":
D, I = self.knn(xq_l, xb_l, k, metric=metric_type, **extra_args)
return D, I
def big_batch_search(
index, xq, k,
method="knn_function",
pairwise_distances=faiss.pairwise_distances,
knn=faiss.knn,
verbose=0,
threaded=0,
use_float16=False,
prefetch_threads=1,
computation_threads=1,
q_assign=None,
checkpoint=None,
checkpoint_freq=7200,
start_list=0,
end_list=None,
crash_at=-1
):
"""
Search queries xq in the IVF index, with a search function that collects
batches of query vectors per inverted list. This can be faster than the
regular search indexes.
Supports IVFFlat, IVFPQ and IVFScalarQuantizer.
Supports three computation methods:
method = "index":
build a flat index and populate it separately for each index
method = "pairwise_distances":
decompress codes and compute all pairwise distances for the queries
and index and add result to heap
method = "knn_function":
decompress codes and compute knn results for the queries
threaded=0: sequential execution
threaded=1: prefetch next bucket while computing the current one
threaded=2: prefetch prefetch_threads buckets at a time.
compute_threads>1: the knn function will get an additional thread_no that
tells which worker should handle this.
In threaded mode, the computation is tiled with the bucket perparation and
the writeback of results (useful to maximize GPU utilization).
use_float16: convert all matrices to float16 (faster for GPU gemm)
q_assign: override coarse assignment, should be a matrix of size nq * nprobe
checkpointing (only for threaded > 1):
checkpoint: file where the checkpoints are stored
checkpoint_freq: when to perform checkpoinging. Should be a multiple of threaded
start_list, end_list: process only a subset of invlists
"""
nprobe = index.nprobe
assert method in ("index", "pairwise_distances", "knn_function")
mem_queries = xq.nbytes
mem_assign = len(xq) * nprobe * np.dtype('int32').itemsize
mem_res = len(xq) * k * (
np.dtype('int64').itemsize
+ np.dtype('float32').itemsize
)
mem_tot = mem_queries + mem_assign + mem_res
if verbose > 0:
logging.info(
f"memory: queries {mem_queries} assign {mem_assign} "
f"result {mem_res} total {mem_tot} = {mem_tot / (1<<30):.3f} GiB"
)
bbs = BigBatchSearcher(
index, xq, k,
verbose=verbose,
use_float16=use_float16
)
comp = BlockComputer(
index,
method=method,
pairwise_distances=pairwise_distances,
knn=knn
)
bbs.decode_func = comp.decode_func
bbs.by_residual = comp.by_residual
if q_assign is None:
bbs.coarse_quantization()
else:
bbs.q_assign = q_assign
bbs.reorder_assign()
if end_list is None:
end_list = index.nlist
completed = set()
if checkpoint is not None:
assert (start_list, end_list) == (0, index.nlist)
if os.path.exists(checkpoint):
logging.info(f"recovering checkpoint: {checkpoint}")
completed = bbs.read_checkpoint(checkpoint)
logging.info(f" already completed: {len(completed)}")
else:
logging.info("no checkpoint: starting from scratch")
if threaded == 0:
# simple sequential version
for l in range(start_list, end_list):
bbs.report(l)
q_subset, xq_l, list_ids, xb_l = bbs.prepare_bucket(l)
t0i = time.time()
D, I = comp.block_search(xq_l, xb_l, list_ids, k)
bbs.t_accu[2] += time.time() - t0i
bbs.add_results_to_heap(q_subset, D, list_ids, I)
elif threaded == 1:
# parallel version with granularity 1
def add_results_and_prefetch(to_add, l):
""" perform the addition for the previous bucket and
prefetch the next (if applicable) """
if to_add is not None:
bbs.add_results_to_heap(*to_add)
if l < index.nlist:
return bbs.prepare_bucket(l)
prefetched_bucket = bbs.prepare_bucket(start_list)
to_add = None
pool = ThreadPool(1)
for l in range(start_list, end_list):
bbs.report(l)
prefetched_bucket_a = pool.apply_async(
add_results_and_prefetch, (to_add, l + 1))
q_subset, xq_l, list_ids, xb_l = prefetched_bucket
bbs.start_t_accu()
D, I = comp.block_search(xq_l, xb_l, list_ids, k)
bbs.stop_t_accu(2)
to_add = q_subset, D, list_ids, I
bbs.start_t_accu()
prefetched_bucket = prefetched_bucket_a.get()
bbs.stop_t_accu(4)
bbs.add_results_to_heap(*to_add)
pool.close()
else:
def task_manager_thread(
task,
pool_size,
start_task,
end_task,
completed,
output_queue,
input_queue,
):
try:
with ThreadPool(pool_size) as pool:
res = [pool.apply_async(
task,
args=(i, output_queue, input_queue))
for i in range(start_task, end_task)
if i not in completed]
for r in res:
r.get()
pool.close()
pool.join()
output_queue.put(None)
except:
traceback.print_exc()
_thread.interrupt_main()
raise
def task_manager(*args):
task_manager = threading.Thread(
target=task_manager_thread,
args=args,
)
task_manager.daemon = True
task_manager.start()
return task_manager
def prepare_task(task_id, output_queue, input_queue=None):
try:
logging.info(f"Prepare start: {task_id}")
q_subset, xq_l, list_ids, xb_l = bbs.prepare_bucket(task_id)
output_queue.put((task_id, q_subset, xq_l, list_ids, xb_l))
logging.info(f"Prepare end: {task_id}")
except:
traceback.print_exc()
_thread.interrupt_main()
raise
def compute_task(task_id, output_queue, input_queue):
try:
logging.info(f"Compute start: {task_id}")
t_wait_out = 0
while True:
t0 = time.time()
logging.info(f'Compute input: task {task_id}')
input_value = input_queue.get()
t_wait_in = time.time() - t0
if input_value is None:
# signal for other compute tasks
input_queue.put(None)
break
centroid, q_subset, xq_l, list_ids, xb_l = input_value
logging.info(f'Compute work: task {task_id}, centroid {centroid}')
t0 = time.time()
if computation_threads > 1:
D, I = comp.block_search(
xq_l, xb_l, list_ids, k, thread_id=task_id
)
else:
D, I = comp.block_search(xq_l, xb_l, list_ids, k)
t_compute = time.time() - t0
logging.info(f'Compute output: task {task_id}, centroid {centroid}')
t0 = time.time()
output_queue.put(
(centroid, t_wait_in, t_wait_out, t_compute, q_subset, D, list_ids, I)
)
t_wait_out = time.time() - t0
logging.info(f"Compute end: {task_id}")
except:
traceback.print_exc()
_thread.interrupt_main()
raise
prepare_to_compute_queue = Queue(2)
compute_to_main_queue = Queue(2)
compute_task_manager = task_manager(
compute_task,
computation_threads,
0,
computation_threads,
set(),
compute_to_main_queue,
prepare_to_compute_queue,
)
prepare_task_manager = task_manager(
prepare_task,
prefetch_threads,
start_list,
end_list,
completed,
prepare_to_compute_queue,
None,
)
t_checkpoint = time.time()
while True:
logging.info("Waiting for result")
value = compute_to_main_queue.get()
if not value:
break
centroid, t_wait_in, t_wait_out, t_compute, q_subset, D, list_ids, I = value
# to test checkpointing
if centroid == crash_at:
1 / 0
bbs.t_accu[2] += t_compute
bbs.t_accu[4] += t_wait_in
bbs.t_accu[5] += t_wait_out
logging.info(f"Adding to heap start: centroid {centroid}")
bbs.add_results_to_heap(q_subset, D, list_ids, I)
logging.info(f"Adding to heap end: centroid {centroid}")
completed.add(centroid)
bbs.report(centroid)
if checkpoint is not None:
if time.time() - t_checkpoint > checkpoint_freq:
logging.info("writing checkpoint")
bbs.write_checkpoint(checkpoint, completed)
t_checkpoint = time.time()
prepare_task_manager.join()
compute_task_manager.join()
bbs.tic("finalize heap")
bbs.rh.finalize()
bbs.toc()
return bbs.rh.D, bbs.rh.I
|