File size: 43,201 Bytes
2a0bc63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import inspect

import faiss
import numpy as np

from faiss.loader import (
    DirectMap,
    IDSelector,
    IDSelectorArray,
    IDSelectorBatch,
    OperatingPoints,
    RangeSearchResult,
    rev_swig_ptr,
    swig_ptr,
    try_extract_index_ivf,
)

##################################################################
# The functions below add or replace some methods for classes
# this is to be able to pass in numpy arrays directly
# The C++ version of the classnames will be suffixed with _c
#
# The docstrings in the wrappers are intended to be similar to numpy
# comments, they will appear with help(Class.method) or ?Class.method
# For methods that are not replaced, the C++ documentation will be used if
# swig 4.x is run with -doxygen.
##################################################################

# For most arrays we force the convesion to the target type with
# np.ascontiguousarray, but for uint8 codes, we raise a type error
# because it is unclear how the conversion should occur: with a view
# (= cast) or conversion?

def _check_dtype_uint8(codes):
    if codes.dtype != 'uint8':
        raise TypeError("Input argument %s must be ndarray of dtype "
                        " uint8, but found %s" % ("codes", codes.dtype))
    return np.ascontiguousarray(codes)


def replace_method(the_class, name, replacement, ignore_missing=False):
    """ Replaces a method in a class with another version. The old method

    is renamed to method_name_c (because presumably it was implemented in C) """
    try:
        orig_method = getattr(the_class, name)
    except AttributeError:
        if ignore_missing:
            return
        raise
    if orig_method.__name__ == 'replacement_' + name:
        # replacement was done in parent class
        return
    setattr(the_class, name + '_c', orig_method)
    setattr(the_class, name, replacement)


def handle_Clustering(the_class):

    def replacement_train(self, x, index, weights=None):
        """Perform clustering on a set of vectors. The index is used for assignment.



        Parameters

        ----------

        x : array_like

            Training vectors, shape (n, self.d). `dtype` must be float32.

        index : faiss.Index

            Index used for assignment. The dimension of the index should be `self.d`.

        weights : array_like, optional

            Per training sample weight (size n) used when computing the weighted

            average to obtain the centroid (default is 1 for all training vectors).

        """
        n, d = x.shape
        x = np.ascontiguousarray(x, dtype='float32')
        assert d == self.d
        if weights is not None:
            weights = np.ascontiguousarray(weights, dtype='float32')
            assert weights.shape == (n, )
            self.train_c(n, swig_ptr(x), index, swig_ptr(weights))
        else:
            self.train_c(n, swig_ptr(x), index)

    def replacement_train_encoded(self, x, codec, index, weights=None):
        """ Perform clustering on a set of compressed vectors. The index is used for assignment.

        The decompression is performed on-the-fly.



        Parameters

        ----------

        x : array_like

            Training vectors, shape (n, codec.code_size()). `dtype` must be `uint8`.

        codec : faiss.Index

            Index used to decode the vectors. Should have dimension `self.d`.

        index : faiss.Index

            Index used for assignment. The dimension of the index should be `self.d`.

        weigths : array_like, optional

            Per training sample weight (size n) used when computing the weighted

            average to obtain the centroid (default is 1 for all training vectors).

        """
        n, d = x.shape
        x = _check_dtype_uint8(x)
        assert d == codec.sa_code_size()
        assert codec.d == index.d
        if weights is not None:
            weights = np.ascontiguousarray(weights, dtype='float32')
            assert weights.shape == (n, )
            self.train_encoded_c(n, swig_ptr(x), codec,
                                 index, swig_ptr(weights))
        else:
            self.train_encoded_c(n, swig_ptr(x), codec, index)

    replace_method(the_class, 'train', replacement_train)
    replace_method(the_class, 'train_encoded', replacement_train_encoded)


def handle_Clustering1D(the_class):

    def replacement_train_exact(self, x):
        """Perform clustering on a set of 1D vectors.



        Parameters

        ----------

        x : array_like

            Training vectors, shape (n, 1). `dtype` must be float32.

        """
        n, d = x.shape
        x = np.ascontiguousarray(x, dtype='float32')
        assert d == self.d
        self.train_exact_c(n, swig_ptr(x))

    replace_method(the_class, 'train_exact', replacement_train_exact)


def handle_Quantizer(the_class):

    def replacement_train(self, x):
        """ Train the quantizer on a set of training vectors.



        Parameters

        ----------

        x : array_like

            Training vectors, shape (n, self.d). `dtype` must be float32.

        """
        n, d = x.shape
        x = np.ascontiguousarray(x, dtype='float32')
        assert d == self.d
        self.train_c(n, swig_ptr(x))

    def replacement_compute_codes(self, x):
        """ Compute the codes corresponding to a set of vectors.



        Parameters

        ----------

        x : array_like

            Vectors to encode, shape (n, self.d). `dtype` must be float32.



        Returns

        -------

        codes : array_like

            Corresponding code for each vector, shape (n, self.code_size)

            and `dtype` uint8.

        """
        n, d = x.shape
        x = np.ascontiguousarray(x, dtype='float32')
        assert d == self.d
        codes = np.empty((n, self.code_size), dtype='uint8')
        self.compute_codes_c(swig_ptr(x), swig_ptr(codes), n)
        return codes

    def replacement_decode(self, codes):
        """Reconstruct an approximation of vectors given their codes.



        Parameters

        ----------

        codes : array_like

            Codes to decode, shape (n, self.code_size). `dtype` must be uint8.



        Returns

        -------

            Reconstructed vectors for each code, shape `(n, d)` and `dtype` float32.

        """
        n, cs = codes.shape
        codes = _check_dtype_uint8(codes)
        assert cs == self.code_size
        x = np.empty((n, self.d), dtype='float32')
        self.decode_c(swig_ptr(codes), swig_ptr(x), n)
        return x

    replace_method(the_class, 'train', replacement_train)
    replace_method(the_class, 'compute_codes', replacement_compute_codes)
    replace_method(the_class, 'decode', replacement_decode)


def handle_NSG(the_class):

    def replacement_build(self, x, graph):
        n, d = x.shape
        assert d == self.d
        assert graph.ndim == 2
        assert graph.shape[0] == n
        K = graph.shape[1]
        x = np.ascontiguousarray(x, dtype='float32')
        graph = np.ascontiguousarray(graph, dtype='int64')
        self.build_c(n, swig_ptr(x), swig_ptr(graph), K)

    replace_method(the_class, 'build', replacement_build)


def handle_Index(the_class):

    def replacement_add(self, x):
        """Adds vectors to the index.

        The index must be trained before vectors can be added to it.

        The vectors are implicitly numbered in sequence. When `n` vectors are

        added to the index, they are given ids `ntotal`, `ntotal + 1`, ..., `ntotal + n - 1`.



        Parameters

        ----------

        x : array_like

            Query vectors, shape (n, d) where d is appropriate for the index.

            `dtype` must be float32.

        """

        n, d = x.shape
        assert d == self.d
        x = np.ascontiguousarray(x, dtype='float32')
        self.add_c(n, swig_ptr(x))

    def replacement_add_with_ids(self, x, ids):
        """Adds vectors with arbitrary ids to the index (not all indexes support this).

        The index must be trained before vectors can be added to it.

        Vector `i` is stored in `x[i]` and has id `ids[i]`.



        Parameters

        ----------

        x : array_like

            Query vectors, shape (n, d) where d is appropriate for the index.

            `dtype` must be float32.

        ids : array_like

            Array if ids of size n. The ids must be of type `int64`. Note that `-1` is reserved

            in result lists to mean "not found" so it's better to not use it as an id.

        """
        n, d = x.shape
        assert d == self.d
        x = np.ascontiguousarray(x, dtype='float32')
        ids = np.ascontiguousarray(ids, dtype='int64')
        assert ids.shape == (n, ), 'not same nb of vectors as ids'
        self.add_with_ids_c(n, swig_ptr(x), swig_ptr(ids))

    def replacement_assign(self, x, k, labels=None):
        """Find the k nearest neighbors of the set of vectors x in the index.

        This is the same as the `search` method, but discards the distances.



        Parameters

        ----------

        x : array_like

            Query vectors, shape (n, d) where d is appropriate for the index.

            `dtype` must be float32.

        k : int

            Number of nearest neighbors.

        labels : array_like, optional

            Labels array to store the results.



        Returns

        -------

        labels: array_like

            Labels of the nearest neighbors, shape (n, k).

            When not enough results are found, the label is set to -1

        """
        n, d = x.shape
        assert d == self.d
        x = np.ascontiguousarray(x, dtype='float32')

        if labels is None:
            labels = np.empty((n, k), dtype=np.int64)
        else:
            assert labels.shape == (n, k)

        self.assign_c(n, swig_ptr(x), swig_ptr(labels), k)
        return labels

    def replacement_train(self, x):
        """Trains the index on a representative set of vectors.

        The index must be trained before vectors can be added to it.



        Parameters

        ----------

        x : array_like

            Query vectors, shape (n, d) where d is appropriate for the index.

            `dtype` must be float32.

        """
        n, d = x.shape
        assert d == self.d
        x = np.ascontiguousarray(x, dtype='float32')
        self.train_c(n, swig_ptr(x))

    def replacement_search(self, x, k, *, params=None, D=None, I=None):
        """Find the k nearest neighbors of the set of vectors x in the index.



        Parameters

        ----------

        x : array_like

            Query vectors, shape (n, d) where d is appropriate for the index.

            `dtype` must be float32.

        k : int

            Number of nearest neighbors.

        params : SearchParameters

            Search parameters of the current search (overrides the class-level params)

        D : array_like, optional

            Distance array to store the result.

        I : array_like, optional

            Labels array to store the results.



        Returns

        -------

        D : array_like

            Distances of the nearest neighbors, shape (n, k). When not enough results are found

            the label is set to +Inf or -Inf.

        I : array_like

            Labels of the nearest neighbors, shape (n, k).

            When not enough results are found, the label is set to -1

        """

        n, d = x.shape
        x = np.ascontiguousarray(x, dtype='float32')
        assert d == self.d

        assert k > 0

        if D is None:
            D = np.empty((n, k), dtype=np.float32)
        else:
            assert D.shape == (n, k)

        if I is None:
            I = np.empty((n, k), dtype=np.int64)
        else:
            assert I.shape == (n, k)

        self.search_c(n, swig_ptr(x), k, swig_ptr(D), swig_ptr(I), params)
        return D, I

    def replacement_search_and_reconstruct(self, x, k, *, params=None, D=None, I=None, R=None):
        """Find the k nearest neighbors of the set of vectors x in the index,

        and return an approximation of these vectors.



        Parameters

        ----------

        x : array_like

            Query vectors, shape (n, d) where d is appropriate for the index.

            `dtype` must be float32.

        k : int

            Number of nearest neighbors.

        params : SearchParameters

            Search parameters of the current search (overrides the class-level params)

        D : array_like, optional

            Distance array to store the result.

        I : array_like, optional

            Labels array to store the result.

        R : array_like, optional

            reconstruction array to store



        Returns

        -------

        D : array_like

            Distances of the nearest neighbors, shape (n, k). When not enough results are found

            the label is set to +Inf or -Inf.

        I : array_like

            Labels of the nearest neighbors, shape (n, k). When not enough results are found,

            the label is set to -1

        R : array_like

            Approximate (reconstructed) nearest neighbor vectors, shape (n, k, d).

        """
        n, d = x.shape
        assert d == self.d
        x = np.ascontiguousarray(x, dtype='float32')

        assert k > 0

        if D is None:
            D = np.empty((n, k), dtype=np.float32)
        else:
            assert D.shape == (n, k)

        if I is None:
            I = np.empty((n, k), dtype=np.int64)
        else:
            assert I.shape == (n, k)

        if R is None:
            R = np.empty((n, k, d), dtype=np.float32)
        else:
            assert R.shape == (n, k, d)

        self.search_and_reconstruct_c(
            n, swig_ptr(x),
            k, swig_ptr(D),
            swig_ptr(I), swig_ptr(R), params
        )
        return D, I, R

    def replacement_search_and_return_codes(

            self, x, k, *,

            include_listnos=False, params=None, D=None, I=None, codes=None):
        """Find the k nearest neighbors of the set of vectors x in the index,

        and return the codes stored for these vectors



        Parameters

        ----------

        x : array_like

            Query vectors, shape (n, d) where d is appropriate for the index.

            `dtype` must be float32.

        k : int

            Number of nearest neighbors.

        params : SearchParameters

            Search parameters of the current search (overrides the class-level params)

        include_listnos : bool, optional

            whether to include the list ids in the first bytes of each code

        D : array_like, optional

            Distance array to store the result.

        I : array_like, optional

            Labels array to store the result.

        codes : array_like, optional

            codes array to store



        Returns

        -------

        D : array_like

            Distances of the nearest neighbors, shape (n, k). When not enough results are found

            the label is set to +Inf or -Inf.

        I : array_like

            Labels of the nearest neighbors, shape (n, k). When not enough results are found,

            the label is set to -1

        R : array_like

            Approximate (reconstructed) nearest neighbor vectors, shape (n, k, d).

        """
        n, d = x.shape
        assert d == self.d
        x = np.ascontiguousarray(x, dtype='float32')

        assert k > 0

        if D is None:
            D = np.empty((n, k), dtype=np.float32)
        else:
            assert D.shape == (n, k)

        if I is None:
            I = np.empty((n, k), dtype=np.int64)
        else:
            assert I.shape == (n, k)

        code_size_1 = self.code_size
        if include_listnos:
            code_size_1 += self.coarse_code_size()

        if codes is None:
            codes = np.empty((n, k, code_size_1), dtype=np.uint8)
        else:
            assert codes.shape == (n, k, code_size_1)

        self.search_and_return_codes_c(
            n, swig_ptr(x),
            k, swig_ptr(D),
            swig_ptr(I), swig_ptr(codes), include_listnos,
            params
        )
        return D, I, codes

    def replacement_remove_ids(self, x):
        """Remove some ids from the index.

        This is a O(ntotal) operation by default, so could be expensive.



        Parameters

        ----------

        x : array_like or faiss.IDSelector

            Either an IDSelector that returns True for vectors to remove, or a

            list of ids to reomove (1D array of int64). When `x` is a list,

            it is wrapped into an IDSelector.



        Returns

        -------

        n_remove: int

            number of vectors that were removed

        """
        if isinstance(x, IDSelector):
            sel = x
        else:
            assert x.ndim == 1
            index_ivf = try_extract_index_ivf(self)
            x = np.ascontiguousarray(x, dtype='int64')
            if index_ivf and index_ivf.direct_map.type == DirectMap.Hashtable:
                sel = IDSelectorArray(x.size, swig_ptr(x))
            else:
                sel = IDSelectorBatch(x.size, swig_ptr(x))
        return self.remove_ids_c(sel)

    def replacement_reconstruct(self, key, x=None):
        """Approximate reconstruction of one vector from the index.



        Parameters

        ----------

        key : int

            Id of the vector to reconstruct

        x : array_like, optional

            pre-allocated array to store the results



        Returns

        -------

        x : array_like reconstructed vector, size `self.d`, `dtype`=float32

        """
        if x is None:
            x = np.empty(self.d, dtype=np.float32)
        else:
            assert x.shape == (self.d, )

        self.reconstruct_c(key, swig_ptr(x))
        return x

    def replacement_reconstruct_batch(self, key, x=None):
        """Approximate reconstruction of several vectors from the index.



        Parameters

        ----------

        key : array of ints

            Ids of the vectors to reconstruct

        x : array_like, optional

            pre-allocated array to store the results



        Returns

        -------

        x : array_like

            reconstrcuted vectors, size `len(key), self.d`

        """
        key = np.ascontiguousarray(key, dtype='int64')
        n, = key.shape
        if x is None:
            x = np.empty((n, self.d), dtype=np.float32)
        else:
            assert x.shape == (n, self.d)
        self.reconstruct_batch_c(n, swig_ptr(key), swig_ptr(x))
        return x

    def replacement_reconstruct_n(self, n0=0, ni=-1, x=None):
        """Approximate reconstruction of vectors `n0` ... `n0 + ni - 1` from the index.

        Missing vectors trigger an exception.



        Parameters

        ----------

        n0 : int

            Id of the first vector to reconstruct (default 0)

        ni : int

            Number of vectors to reconstruct (-1 = default = ntotal)

        x : array_like, optional

            pre-allocated array to store the results



        Returns

        -------

        x : array_like

            Reconstructed vectors, size (`ni`, `self.d`), `dtype`=float32

        """
        if ni == -1:
            ni = self.ntotal - n0
        if x is None:
            x = np.empty((ni, self.d), dtype=np.float32)
        else:
            assert x.shape == (ni, self.d)

        self.reconstruct_n_c(n0, ni, swig_ptr(x))
        return x

    def replacement_update_vectors(self, keys, x):
        n = keys.size
        assert keys.shape == (n, )
        assert x.shape == (n, self.d)
        x = np.ascontiguousarray(x, dtype='float32')
        keys = np.ascontiguousarray(keys, dtype='int64')
        self.update_vectors_c(n, swig_ptr(keys), swig_ptr(x))

    # No support passed-in for output buffers
    def replacement_range_search(self, x, thresh, *, params=None):
        """Search vectors that are within a distance of the query vectors.



        Parameters

        ----------

        x : array_like

            Query vectors, shape (n, d) where d is appropriate for the index.

            `dtype` must be float32.

        thresh : float

            Threshold to select neighbors. All elements within this radius are returned,

            except for maximum inner product indexes, where the elements above the

            threshold are returned

        params : SearchParameters

            Search parameters of the current search (overrides the class-level params)





        Returns

        -------

        lims: array_like

            Starting index of the results for each query vector, size n+1.

        D : array_like

            Distances of the nearest neighbors, shape `lims[n]`. The distances for

            query i are in `D[lims[i]:lims[i+1]]`.

        I : array_like

            Labels of nearest neighbors, shape `lims[n]`. The labels for query i

            are in `I[lims[i]:lims[i+1]]`.



        """
        n, d = x.shape
        assert d == self.d
        x = np.ascontiguousarray(x, dtype='float32')
        thresh = float(thresh)

        res = RangeSearchResult(n)
        self.range_search_c(n, swig_ptr(x), thresh, res, params)
        # get pointers and copy them
        lims = rev_swig_ptr(res.lims, n + 1).copy()
        nd = int(lims[-1])
        D = rev_swig_ptr(res.distances, nd).copy()
        I = rev_swig_ptr(res.labels, nd).copy()
        return lims, D, I

    def replacement_search_preassigned(self, x, k, Iq, Dq, *, params=None, D=None, I=None):
        """Find the k nearest neighbors of the set of vectors x in an IVF index,

        with precalculated coarse quantization assignment.



        Parameters

        ----------

        x : array_like

            Query vectors, shape (n, d) where d is appropriate for the index.

            `dtype` must be float32.

        k : int

            Number of nearest neighbors.

        Dq : array_like, optional

            Distance array to the centroids, size (n, nprobe)

        Iq : array_like, optional

            Nearest centroids, size (n, nprobe)



        params : SearchParameters

            Search parameters of the current search (overrides the class-level params)

        D : array_like, optional

            Distance array to store the result.

        I : array_like, optional

            Labels array to store the results.



        Returns

        -------

        D : array_like

            Distances of the nearest neighbors, shape (n, k). When not enough results are found

            the label is set to +Inf or -Inf.

        I : array_like

            Labels of the nearest neighbors, shape (n, k).

            When not enough results are found, the label is set to -1

        """
        n, d = x.shape
        x = np.ascontiguousarray(x, dtype='float32')
        assert d == self.d
        assert k > 0

        if D is None:
            D = np.empty((n, k), dtype=np.float32)
        else:
            assert D.shape == (n, k)

        if I is None:
            I = np.empty((n, k), dtype=np.int64)
        else:
            assert I.shape == (n, k)

        Iq = np.ascontiguousarray(Iq, dtype='int64')
        assert params is None, "params not supported"
        assert Iq.shape == (n, self.nprobe)

        if Dq is not None:
            Dq = np.ascontiguousarray(Dq, dtype='float32')
            assert Dq.shape == Iq.shape

        self.search_preassigned_c(
            n, swig_ptr(x),
            k,
            swig_ptr(Iq), swig_ptr(Dq),
            swig_ptr(D), swig_ptr(I),
            False
        )
        return D, I

    def replacement_range_search_preassigned(self, x, thresh, Iq, Dq, *, params=None):
        """Search vectors that are within a distance of the query vectors.



        Parameters

        ----------

        x : array_like

            Query vectors, shape (n, d) where d is appropriate for the index.

            `dtype` must be float32.

        thresh : float

            Threshold to select neighbors. All elements within this radius are returned,

            except for maximum inner product indexes, where the elements above the

            threshold are returned

        Iq : array_like, optional

            Nearest centroids, size (n, nprobe)

        Dq : array_like, optional

            Distance array to the centroids, size (n, nprobe)

        params : SearchParameters

            Search parameters of the current search (overrides the class-level params)





        Returns

        -------

        lims: array_like

            Starting index of the results for each query vector, size n+1.

        D : array_like

            Distances of the nearest neighbors, shape `lims[n]`. The distances for

            query i are in `D[lims[i]:lims[i+1]]`.

        I : array_like

            Labels of nearest neighbors, shape `lims[n]`. The labels for query i

            are in `I[lims[i]:lims[i+1]]`.



        """
        n, d = x.shape
        assert d == self.d
        x = np.ascontiguousarray(x, dtype='float32')

        Iq = np.ascontiguousarray(Iq, dtype='int64')
        assert params is None, "params not supported"
        assert Iq.shape == (n, self.nprobe)

        if Dq is not None:
            Dq = np.ascontiguousarray(Dq, dtype='float32')
            assert Dq.shape == Iq.shape

        thresh = float(thresh)
        res = RangeSearchResult(n)
        self.range_search_preassigned_c(
            n, swig_ptr(x), thresh,
            swig_ptr(Iq), swig_ptr(Dq),
            res
        )
        # get pointers and copy them
        lims = rev_swig_ptr(res.lims, n + 1).copy()
        nd = int(lims[-1])
        D = rev_swig_ptr(res.distances, nd).copy()
        I = rev_swig_ptr(res.labels, nd).copy()
        return lims, D, I

    def replacement_sa_encode(self, x, codes=None):
        n, d = x.shape
        assert d == self.d
        x = np.ascontiguousarray(x, dtype='float32')

        if codes is None:
            codes = np.empty((n, self.sa_code_size()), dtype=np.uint8)
        else:
            assert codes.shape == (n, self.sa_code_size())

        self.sa_encode_c(n, swig_ptr(x), swig_ptr(codes))
        return codes

    def replacement_sa_decode(self, codes, x=None):
        n, cs = codes.shape
        assert cs == self.sa_code_size()
        codes = _check_dtype_uint8(codes)

        if x is None:
            x = np.empty((n, self.d), dtype=np.float32)
        else:
            assert x.shape == (n, self.d)

        self.sa_decode_c(n, swig_ptr(codes), swig_ptr(x))
        return x

    def replacement_add_sa_codes(self, codes, ids=None):
        n, cs = codes.shape
        assert cs == self.sa_code_size()
        codes = _check_dtype_uint8(codes)

        if ids is not None:
            assert ids.shape == (n,)
            ids = swig_ptr(ids)
        self.add_sa_codes_c(n, swig_ptr(codes), ids)

    def replacement_permute_entries(self, perm):
        n, = perm.shape
        assert n == self.ntotal
        perm = np.ascontiguousarray(perm, dtype='int64')
        self.permute_entries_c(faiss.swig_ptr(perm))

    replace_method(the_class, 'add', replacement_add)
    replace_method(the_class, 'add_with_ids', replacement_add_with_ids)
    replace_method(the_class, 'assign', replacement_assign)
    replace_method(the_class, 'train', replacement_train)
    replace_method(the_class, 'search', replacement_search)
    replace_method(the_class, 'remove_ids', replacement_remove_ids)
    replace_method(the_class, 'reconstruct', replacement_reconstruct)
    replace_method(the_class, 'reconstruct_batch',
                   replacement_reconstruct_batch)
    replace_method(the_class, 'reconstruct_n', replacement_reconstruct_n)
    replace_method(the_class, 'range_search', replacement_range_search)
    replace_method(the_class, 'update_vectors', replacement_update_vectors,
                   ignore_missing=True)
    replace_method(the_class, 'search_and_reconstruct',
                   replacement_search_and_reconstruct, ignore_missing=True)
    replace_method(the_class, 'search_and_return_codes',
                   replacement_search_and_return_codes, ignore_missing=True)

    # these ones are IVF-specific
    replace_method(the_class, 'search_preassigned',
                   replacement_search_preassigned, ignore_missing=True)
    replace_method(the_class, 'range_search_preassigned',
                   replacement_range_search_preassigned, ignore_missing=True)
    replace_method(the_class, 'sa_encode', replacement_sa_encode)
    replace_method(the_class, 'sa_decode', replacement_sa_decode)
    replace_method(the_class, 'add_sa_codes', replacement_add_sa_codes,
                   ignore_missing=True)
    replace_method(the_class, 'permute_entries', replacement_permute_entries,
                   ignore_missing=True)

    # get/set state for pickle
    # the data is serialized to std::vector -> numpy array -> python bytes
    # so not very efficient for now.

    def index_getstate(self):
        return {"this": faiss.serialize_index(self).tobytes()}

    def index_setstate(self, st):
        index2 = faiss.deserialize_index(np.frombuffer(st["this"], dtype="uint8"))
        self.this = index2.this

    the_class.__getstate__ = index_getstate
    the_class.__setstate__ = index_setstate


def handle_IndexBinary(the_class):

    def replacement_add(self, x):
        n, d = x.shape
        x = _check_dtype_uint8(x)
        assert d == self.code_size
        self.add_c(n, swig_ptr(x))

    def replacement_add_with_ids(self, x, ids):
        n, d = x.shape
        x = _check_dtype_uint8(x)
        ids = np.ascontiguousarray(ids, dtype='int64')
        assert d == self.code_size
        assert ids.shape == (n, ), 'not same nb of vectors as ids'
        self.add_with_ids_c(n, swig_ptr(x), swig_ptr(ids))

    def replacement_train(self, x):
        n, d = x.shape
        x = _check_dtype_uint8(x)
        assert d == self.code_size
        self.train_c(n, swig_ptr(x))

    def replacement_reconstruct(self, key):
        x = np.empty(self.code_size, dtype=np.uint8)
        self.reconstruct_c(key, swig_ptr(x))
        return x

    def replacement_reconstruct_n(self, n0=0, ni=-1, x=None):
        if ni == -1:
            ni = self.ntotal - n0
        if x is None:
            x = np.empty((ni, self.code_size), dtype=np.uint8)
        else:
            assert x.shape == (ni, self.code_size)

        self.reconstruct_n_c(n0, ni, swig_ptr(x))
        return x

    def replacement_search(self, x, k):
        x = _check_dtype_uint8(x)
        n, d = x.shape
        assert d == self.code_size
        assert k > 0
        distances = np.empty((n, k), dtype=np.int32)
        labels = np.empty((n, k), dtype=np.int64)
        self.search_c(n, swig_ptr(x),
                      k, swig_ptr(distances),
                      swig_ptr(labels))
        return distances, labels

    def replacement_search_preassigned(self, x, k, Iq, Dq):
        n, d = x.shape
        x = _check_dtype_uint8(x)
        assert d == self.code_size
        assert k > 0

        D = np.empty((n, k), dtype=np.int32)
        I = np.empty((n, k), dtype=np.int64)

        Iq = np.ascontiguousarray(Iq, dtype='int64')
        assert Iq.shape == (n, self.nprobe)

        if Dq is not None:
            Dq = np.ascontiguousarray(Dq, dtype='int32')
            assert Dq.shape == Iq.shape

        self.search_preassigned_c(
            n, swig_ptr(x),
            k,
            swig_ptr(Iq), swig_ptr(Dq),
            swig_ptr(D), swig_ptr(I),
            False
        )
        return D, I

    def replacement_range_search(self, x, thresh):
        n, d = x.shape
        x = _check_dtype_uint8(x)
        assert d == self.code_size
        res = RangeSearchResult(n)
        self.range_search_c(n, swig_ptr(x), thresh, res)
        # get pointers and copy them
        lims = rev_swig_ptr(res.lims, n + 1).copy()
        nd = int(lims[-1])
        D = rev_swig_ptr(res.distances, nd).copy()
        I = rev_swig_ptr(res.labels, nd).copy()
        return lims, D, I

    def replacement_range_search_preassigned(self, x, thresh, Iq, Dq, *, params=None):
        n, d = x.shape
        x = _check_dtype_uint8(x)
        assert d == self.code_size

        Iq = np.ascontiguousarray(Iq, dtype='int64')
        assert params is None, "params not supported"
        assert Iq.shape == (n, self.nprobe)

        if Dq is not None:
            Dq = np.ascontiguousarray(Dq, dtype='int32')
            assert Dq.shape == Iq.shape

        thresh = int(thresh)
        res = RangeSearchResult(n)
        self.range_search_preassigned_c(
            n, swig_ptr(x), thresh,
            swig_ptr(Iq), swig_ptr(Dq),
            res
        )
        # get pointers and copy them
        lims = rev_swig_ptr(res.lims, n + 1).copy()
        nd = int(lims[-1])
        D = rev_swig_ptr(res.distances, nd).copy()
        I = rev_swig_ptr(res.labels, nd).copy()
        return lims, D, I

    def replacement_remove_ids(self, x):
        if isinstance(x, IDSelector):
            sel = x
        else:
            assert x.ndim == 1
            x = np.ascontiguousarray(x, dtype='int64')
            sel = IDSelectorBatch(x.size, swig_ptr(x))
        return self.remove_ids_c(sel)

    replace_method(the_class, 'add', replacement_add)
    replace_method(the_class, 'add_with_ids', replacement_add_with_ids)
    replace_method(the_class, 'train', replacement_train)
    replace_method(the_class, 'search', replacement_search)
    replace_method(the_class, 'range_search', replacement_range_search)
    replace_method(the_class, 'reconstruct', replacement_reconstruct)
    replace_method(the_class, 'reconstruct_n', replacement_reconstruct_n)
    replace_method(the_class, 'remove_ids', replacement_remove_ids)
    replace_method(the_class, 'search_preassigned',
                   replacement_search_preassigned, ignore_missing=True)
    replace_method(the_class, 'range_search_preassigned',
                   replacement_range_search_preassigned, ignore_missing=True)


def handle_VectorTransform(the_class):

    def apply_method(self, x):
        n, d = x.shape
        x = np.ascontiguousarray(x, dtype='float32')
        assert d == self.d_in
        y = np.empty((n, self.d_out), dtype=np.float32)
        self.apply_noalloc(n, swig_ptr(x), swig_ptr(y))
        return y

    def replacement_reverse_transform(self, x):
        n, d = x.shape
        x = np.ascontiguousarray(x, dtype='float32')
        assert d == self.d_out
        y = np.empty((n, self.d_in), dtype=np.float32)
        self.reverse_transform_c(n, swig_ptr(x), swig_ptr(y))
        return y

    def replacement_vt_train(self, x):
        n, d = x.shape
        x = np.ascontiguousarray(x, dtype='float32')
        assert d == self.d_in
        self.train_c(n, swig_ptr(x))

    replace_method(the_class, 'train', replacement_vt_train)
    # apply is reserved in Pyton...
    the_class.apply_py = apply_method
    the_class.apply = apply_method
    replace_method(the_class, 'reverse_transform',
                   replacement_reverse_transform)


def handle_AutoTuneCriterion(the_class):
    def replacement_set_groundtruth(self, D, I):
        if D:
            assert I.shape == D.shape
        self.nq, self.gt_nnn = I.shape
        self.set_groundtruth_c(
            self.gt_nnn, swig_ptr(D) if D else None, swig_ptr(I))

    def replacement_evaluate(self, D, I):
        assert I.shape == D.shape
        assert I.shape == (self.nq, self.nnn)
        return self.evaluate_c(swig_ptr(D), swig_ptr(I))

    replace_method(the_class, 'set_groundtruth', replacement_set_groundtruth)
    replace_method(the_class, 'evaluate', replacement_evaluate)


def handle_ParameterSpace(the_class):
    def replacement_explore(self, index, xq, crit):
        assert xq.shape == (crit.nq, index.d)
        xq = np.ascontiguousarray(xq, dtype='float32')
        ops = OperatingPoints()
        self.explore_c(index, crit.nq, swig_ptr(xq),
                       crit, ops)
        return ops
    replace_method(the_class, 'explore', replacement_explore)


def handle_MatrixStats(the_class):
    original_init = the_class.__init__

    def replacement_init(self, m):
        assert len(m.shape) == 2
        m = np.ascontiguousarray(m, dtype='float32')
        original_init(self, m.shape[0], m.shape[1], swig_ptr(m))

    the_class.__init__ = replacement_init


def handle_IOWriter(the_class):
    """ add a write_bytes method """
    def write_bytes(self, b):
        return self(swig_ptr(b), 1, len(b))

    the_class.write_bytes = write_bytes


def handle_IOReader(the_class):
    """ add a read_bytes method """

    def read_bytes(self, totsz):
        buf = bytearray(totsz)
        was_read = self(swig_ptr(buf), 1, len(buf))
        return bytes(buf[:was_read])

    the_class.read_bytes = read_bytes


def handle_IndexRowwiseMinMax(the_class):
    def replacement_train_inplace(self, x):
        """Trains the index on a representative set of vectors inplace.

        The index must be trained before vectors can be added to it.



        This call WILL change the values in the input array, because

        of two scaling proceduces being performed inplace.



        Parameters

        ----------

        x : array_like

            Query vectors, shape (n, d) where d is appropriate for the index.

            `dtype` must be float32.

        """
        n, d = x.shape
        assert d == self.d
        x = np.ascontiguousarray(x, dtype='float32')
        self.train_inplace_c(n, swig_ptr(x))

    replace_method(the_class, 'train_inplace', replacement_train_inplace)


def handle_CodePacker(the_class):

    def replacement_pack_1(self, x, offset, block):
        assert x.shape == (self.code_size,)
        nblock, block_size = block.shape
        assert block_size == self.block_size
        assert 0 <= offset < block_size * self.nvec
        self.pack_1_c(swig_ptr(x), offset, faiss.swig_ptr(block))

    def replacement_unpack_1(self, block, offset):
        nblock, block_size = block.shape
        assert block_size == self.block_size
        assert 0 <= offset < block_size * self.nvec
        x = np.zeros(self.code_size, dtype='uint8')
        self.unpack_1_c(faiss.swig_ptr(block), offset, swig_ptr(x))
        return x

    replace_method(the_class, 'pack_1', replacement_pack_1)
    replace_method(the_class, 'unpack_1', replacement_unpack_1)

######################################################
# MapLong2Long interface
######################################################


def handle_MapLong2Long(the_class):

    def replacement_map_add(self, keys, vals):
        n, = keys.shape
        assert (n,) == vals.shape
        self.add_c(n, swig_ptr(keys), swig_ptr(vals))

    def replacement_map_search_multiple(self, keys):
        n, = keys.shape
        vals = np.empty(n, dtype='int64')
        self.search_multiple_c(n, swig_ptr(keys), swig_ptr(vals))
        return vals

    replace_method(the_class, 'add', replacement_map_add)
    replace_method(the_class, 'search_multiple',
                   replacement_map_search_multiple)


######################################################
# SearchParameters and related interface
######################################################


def add_to_referenced_objects(self, ref):
    if not hasattr(self, 'referenced_objects'):
        self.referenced_objects = [ref]
    else:
        self.referenced_objects.append(ref)

class RememberSwigOwnership:
    """

    SWIG's seattr transfers ownership of SWIG wrapped objects to the class

    (btw this seems to contradict https://www.swig.org/Doc1.3/Python.html#Python_nn22

    31.4.2)

    This interferes with how we manage ownership: with the referenced_objects

    table. Therefore, we reset the thisown field in this context manager.

    """

    def __init__(self, obj):
        self.obj = obj

    def __enter__(self):
        if hasattr(self.obj, "thisown"):
            self.old_thisown = self.obj.thisown
        else:
            self.old_thisown = None

    def __exit__(self, *ignored):
        if self.old_thisown is not None:
            self.obj.thisown = self.old_thisown


def handle_SearchParameters(the_class):
    """ this wrapper is to enable initializations of the form

    SearchParametersXX(a=3, b=SearchParamsYY)

    This also requires the enclosing class to keep a reference on the

    sub-object, since the C++ code assumes the object ownwership is

    handled externally.

    """
    the_class.original_init = the_class.__init__

    def replacement_init(self, **args):
        self.original_init()
        for k, v in args.items():
            assert hasattr(self, k)
            with RememberSwigOwnership(v):
                setattr(self, k, v)
            if type(v) not in (int, float, bool, str):
                add_to_referenced_objects(self, v)

    the_class.__init__ = replacement_init


def handle_IDSelectorSubset(the_class, class_owns, force_int64=True):
    the_class.original_init = the_class.__init__

    def replacement_init(self, *args):
        if len(args) == 1:
            # assume it's an array
            subset, = args
            if force_int64:
                subset = np.ascontiguousarray(subset, dtype='int64')
            args = (len(subset), faiss.swig_ptr(subset))
            if not class_owns:
                add_to_referenced_objects(self, subset)
        self.original_init(*args)

    the_class.__init__ = replacement_init


def handle_CodeSet(the_class):

    def replacement_insert(self, codes, inserted=None):
        n, d = codes.shape
        assert d == self.d
        codes = np.ascontiguousarray(codes, dtype=np.uint8)

        if inserted is None:
            inserted = np.empty(n, dtype=bool)
        else:
            assert inserted.shape == (n, )

        self.insert_c(n, swig_ptr(codes), swig_ptr(inserted))
        return inserted

    replace_method(the_class, 'insert', replacement_insert)